ON VANDERWAERDANS THEOREM ON ARITHMETIC PROGRESSIONS

被引:0
|
作者
BROWN, TC
机构
来源
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:245 / &
相关论文
共 50 条
  • [41] A New Proof of Szemerédi's Theorem for Arithmetic Progressions of Length Four
    W. T. Gowers
    Geometric & Functional Analysis GAFA, 1998, 8 : 529 - 551
  • [42] SQUARES IN ARITHMETIC PROGRESSIONS
    BOMBIERI, E
    GRANVILLE, A
    PINTZ, J
    DUKE MATHEMATICAL JOURNAL, 1992, 66 (03) : 369 - 385
  • [43] Arithmetic progressions in sumsets
    B. Green
    Geometric & Functional Analysis GAFA, 2002, 12 : 584 - 597
  • [44] Discrepancy in arithmetic progressions
    Matousek, J
    Spencer, J
    JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 9 (01) : 195 - 204
  • [45] Powerful arithmetic progressions
    Hajdu, L.
    INDAGATIONES MATHEMATICAE-NEW SERIES, 2008, 19 (04): : 547 - 561
  • [46] SUMS OF ARITHMETIC PROGRESSIONS
    COOK, R
    SHARPE, D
    FIBONACCI QUARTERLY, 1995, 33 (03): : 218 - 221
  • [47] PRIMES IN ARITHMETIC PROGRESSIONS
    MONTGOMERY, HL
    MICHIGAN MATHEMATICAL JOURNAL, 1970, 17 (01) : 33 - +
  • [48] Powers in arithmetic progressions
    Lajos Hajdu
    Szabolcs Tengely
    The Ramanujan Journal, 2021, 55 : 965 - 986
  • [49] On disjoint arithmetic progressions
    Chen, YG
    ACTA ARITHMETICA, 2005, 118 (02) : 143 - 148
  • [50] Primes in arithmetic progressions
    Ramare, O
    Rumely, R
    MATHEMATICS OF COMPUTATION, 1996, 65 (213) : 397 - 425