Roman and inverse Roman domination in graphs

被引:0
|
作者
Zaman, Zulfiqar [1 ]
Kumar, M. Kamal [1 ]
Ahmad, Saad Salman [1 ]
机构
[1] Higher Coll Technol, Dept Math, Muscat, Oman
关键词
Domination number; Inverse domination number; Roman domination number;
D O I
10.7546/nntdm.2018.24.3.142-150
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Motivated by the article in Scientific American [8], Michael A Henning and Stephen T. Hedetniemi explored the strategy of defending the Roman Empire. Cockayne defined Roman dominating function (RDF) on a Graph G = (V, E) to be a function f : V -> {0, 1, 2} satisfying the condition that every vertex u for which f (u) = 0. is adjacent to at least one vertex v for which f (v) = 2. For a real valued function f : V -> R the weight of f is w (f) = Sigma(v is an element of V) f (v). The Roman Domination Number (RDN) denoted by gamma(R)(G) is the minimum weight among all RDF in G. If V - D contains a Roman dominating function f(1) : V -> { 0, 1, 2}, where D is the set of vertices v for which f (v) > 0. Then f(1) is called inverse Roman dominating function (IRDF) on a graph G w.r.t. f. The inverse Roman domination number (IRDN) denoted by gamma(1)(R)(G) is the minimum weight among all IRDF in G. In this paper we find few results of RDN and IRDN.
引用
收藏
页码:142 / 150
页数:9
相关论文
共 50 条
  • [31] Resolving Roman domination in graphs
    Pushpam, P. Roushini Leely
    Mahavir, B.
    Kamalam, M.
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2022, 14 (07)
  • [32] Roman domination perfect graphs
    Rad, Nader Jafari
    Volkmann, Lutz
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2011, 19 (03): : 167 - 174
  • [33] Signed Roman domination in graphs
    H. Abdollahzadeh Ahangar
    Michael A. Henning
    Christian Löwenstein
    Yancai Zhao
    Vladimir Samodivkin
    Journal of Combinatorial Optimization, 2014, 27 : 241 - 255
  • [34] A note on Roman domination in graphs
    Rad, Nader Jafari
    UTILITAS MATHEMATICA, 2010, 83 : 305 - 312
  • [35] Locating Roman Domination in Graphs
    Rad, Nader Jafari
    Rahbani, Hadi
    Volkmann, Lutz
    UTILITAS MATHEMATICA, 2019, 110 : 203 - 222
  • [36] Roman domination in regular graphs
    Department of Computer Science, Dalian University of Technology, Dalian, 116024, China
    不详
    Discrete Math, 1600, 6 (1528-1537):
  • [37] Perfect Roman domination in graphs
    Banerjee, S.
    Keil, J. Mark
    Pradhan, D.
    THEORETICAL COMPUTER SCIENCE, 2019, 796 : 1 - 21
  • [38] On the double Roman domination in graphs
    Ahangar, Hossein Abdollahzadeh
    Chellali, Mustapha
    Sheikholeslami, Seyed Mahmoud
    DISCRETE APPLIED MATHEMATICS, 2017, 232 : 1 - 7
  • [39] On Roman balanced domination of graphs
    Zhang, Mingyu
    Zhang, Junxia
    AIMS MATHEMATICS, 2024, 9 (12): : 36001 - 36011
  • [40] Triple Roman domination in graphs
    Ahangar, H. Abdollahzadeh
    Alvarez, M. P.
    Chellali, M.
    Sheikholeslami, S. M.
    Valenzuela-Tripodoro, J. C.
    APPLIED MATHEMATICS AND COMPUTATION, 2021, 391