Roman and inverse Roman domination in graphs

被引:0
|
作者
Zaman, Zulfiqar [1 ]
Kumar, M. Kamal [1 ]
Ahmad, Saad Salman [1 ]
机构
[1] Higher Coll Technol, Dept Math, Muscat, Oman
关键词
Domination number; Inverse domination number; Roman domination number;
D O I
10.7546/nntdm.2018.24.3.142-150
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Motivated by the article in Scientific American [8], Michael A Henning and Stephen T. Hedetniemi explored the strategy of defending the Roman Empire. Cockayne defined Roman dominating function (RDF) on a Graph G = (V, E) to be a function f : V -> {0, 1, 2} satisfying the condition that every vertex u for which f (u) = 0. is adjacent to at least one vertex v for which f (v) = 2. For a real valued function f : V -> R the weight of f is w (f) = Sigma(v is an element of V) f (v). The Roman Domination Number (RDN) denoted by gamma(R)(G) is the minimum weight among all RDF in G. If V - D contains a Roman dominating function f(1) : V -> { 0, 1, 2}, where D is the set of vertices v for which f (v) > 0. Then f(1) is called inverse Roman dominating function (IRDF) on a graph G w.r.t. f. The inverse Roman domination number (IRDN) denoted by gamma(1)(R)(G) is the minimum weight among all IRDF in G. In this paper we find few results of RDN and IRDN.
引用
收藏
页码:142 / 150
页数:9
相关论文
共 50 条
  • [1] INVERSE ROMAN DOMINATION IN GRAPHS
    Kumar, M. Kamal
    Reddy, L. Sudershan
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2013, 5 (03)
  • [2] Inverse double Roman domination in graphs
    D' Souza, Wilma Laveena
    Chaitra, V
    Kumara, M.
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2023, 15 (06)
  • [3] Roman domination in graphs
    University of Victoria, Victoria, BC, V8W 3P4, Canada
    不详
    不详
    1600, 11-22 (March 6, 2004):
  • [4] Roman domination in graphs
    Cockayne, EJ
    Dreyer, PA
    Hedetniemi, SM
    Hedetniemi, ST
    DISCRETE MATHEMATICS, 2004, 278 (1-3) : 11 - 22
  • [5] Complexity of Roman {2}-domination and the double Roman domination in graphs
    Padamutham, Chakradhar
    Palagiri, Venkata Subba Reddy
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2020, 17 (03) : 1081 - 1086
  • [6] ROMAN AND INVERSE ROMAN DOMINATION IN NETWORK OF TRIANGLES
    Kumar, M. K.
    Dhanasekar, N.
    Prasath, G. M. A.
    Giri, R.
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2023, 13 (02): : 546 - 556
  • [7] Perfect Domination, Roman Domination and Perfect Roman Domination in Lexicographic Product Graphs
    Cabrera Martinez, A.
    Garcia-Gomez, C.
    Rodriguez-Velazquez, J. A.
    FUNDAMENTA INFORMATICAE, 2022, 185 (03) : 201 - 220
  • [8] Roman domination and independent Roman domination on graphs with maximum degree three
    Luiz, Atilio G.
    DISCRETE APPLIED MATHEMATICS, 2024, 348 : 260 - 278
  • [9] Signed Roman domination in graphs
    Ahangar, H. Abdollahzadeh
    Henning, Michael A.
    Loewenstein, Christian
    Zhao, Yancai
    Samodivkin, Vladimir
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2014, 27 (02) : 241 - 255
  • [10] Roman domination in signed graphs
    Joseph, James
    Joseph, Mayamma
    COMMUNICATIONS IN COMBINATORICS AND OPTIMIZATION, 2023, 8 (02) : 349 - 358