Adsorption of acetone and isopropanol on organic acid modified activated carbons

被引:63
作者
Tang, Lin [1 ]
Li, Liqing [1 ]
Chen, Ruofei [1 ]
Wang, Chunhao [1 ]
Ma, Weiwu [1 ]
Ma, Xiancheng [1 ]
机构
[1] Cent S Univ, Sch Energy Sci & Engn, Changsha 410083, Hunan, Peoples R China
关键词
Organic acid; Modified activated carbons; Adsorption; Acetone; Isopropanol;
D O I
10.1016/j.jece.2016.03.031
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Commercial activated carbon (AC) was modified using formic acid, oxalic acid, and sulfamic acid separately. The effects of the modification on the physicochemical properties of ACs were evaluated using specific surface area and pore distribution, scanning electron microscope, and Fourier transform infrared spectroscopy. After the modification, (i) the BET specific surface area and total pore volume of ACs decreased, (ii) uneven etching trace and white crystal particles were observed on the surface of AC, and (iii) more oxygen-containing functional groups such as O-H, C=O, C-O, and S=O were formed on the surface. The effects of the modifications on the adsorption behavior of acetone and isopropanol on ACs at different inlet concentrations were studied from adsorption equilibrium, kinetics, and energy point of view. The results show that the equilibrium adsorption capacity has been greatly improved by the modification of organic acids. The adsorption isotherms of acetone and isopropanol on ACs are well fitted by both Langmuir and Freundlich equations. Characteristic adsorption energy values of acetone and isopropanol slightly increase with increasing of oxygen functional groups on the ACs surface. The adsorption kinetics of acetone and isopropanol on ACs are best described by Bangham kinetics model. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2045 / 2051
页数:7
相关论文
共 30 条
[1]   Removal of heavy metal from industrial wastewater using modified activated coconut shell carbon [J].
Amuda, O. S. ;
Giwa, A. A. ;
Bello, I. A. .
BIOCHEMICAL ENGINEERING JOURNAL, 2007, 36 (02) :174-181
[2]   Indoor air purification by photocatalyst TiO2 immobilized on an activated carbon filter installed in an air cleaner [J].
Ao, CH ;
Lee, SC .
CHEMICAL ENGINEERING SCIENCE, 2005, 60 (01) :103-109
[3]   Adsorption of volatile organic compounds by pecan shell- and almond shell-based granular activated carbons [J].
Bansode, RR ;
Losso, JN ;
Marshall, WE ;
Rao, RM ;
Portier, RJ .
BIORESOURCE TECHNOLOGY, 2003, 90 (02) :175-184
[4]   THEORETICAL BASIS FOR THE POTENTIAL-THEORY ADSORPTION-ISOTHERMS - THE DUBININ-RADUSHKEVICH AND DUBININ-ASTAKHOV EQUATIONS [J].
CHEN, SG ;
YANG, RT .
LANGMUIR, 1994, 10 (11) :4244-4249
[5]   Effects of pore structure and temperature on VOC adsorption on activated carbon [J].
Chiang, YC ;
Chaing, PC ;
Huang, CP .
CARBON, 2001, 39 (04) :523-534
[6]  
Dehdashti A, 2011, IRAN J ENVIRON HEALT, V8, P85
[7]   Removal of ferrous and manganous from water by activated carbon obtained from sugarcane bagasse [J].
Elwakeel, Khalid Z. ;
El-Sayed, Gamal O. ;
Abo El-Nassr, Susan M. .
DESALINATION AND WATER TREATMENT, 2015, 55 (02) :471-483
[8]   Catalytic combustion of volatile organic compounds [J].
Everaert, K ;
Baeyens, J .
JOURNAL OF HAZARDOUS MATERIALS, 2004, 109 (1-3) :113-139
[9]   Isotherms, kinetics and thermodynamics of acid dye adsorption on activated palm ash [J].
Hameed, B. H. ;
Ahmad, A. A. ;
Aziz, N. .
CHEMICAL ENGINEERING JOURNAL, 2007, 133 (1-3) :195-203
[10]   Pseudo-second order model for sorption processes [J].
Ho, YS ;
McKay, G .
PROCESS BIOCHEMISTRY, 1999, 34 (05) :451-465