ALGEBRAICALLY STABLE AND IMPLEMENTABLE RUNGE-KUTTA METHODS OF HIGH-ORDER

被引:70
作者
HAIRER, E [1 ]
WANNER, G [1 ]
机构
[1] UNIV GENEVE,MATH SECT,CH-1211 GENEVE 24,SWITZERLAND
关键词
D O I
10.1137/0718074
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:1098 / 1108
页数:11
相关论文
共 50 条
[41]   High-order Runge-Kutta multiresolution time-domain methods for computational electromagnetics [J].
Cao, Qunsheng ;
Kanapady, Ramdev ;
Reitich, Ferriando .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2006, 54 (08) :3316-3326
[42]   A problem-independent limiter for high-order Runge-Kutta discontinuous Galerkin methods [J].
Burbeau, A ;
Sagaut, P ;
Bruneau, CH .
JOURNAL OF COMPUTATIONAL PHYSICS, 2001, 169 (01) :111-150
[43]   Highly stable parallel Runge-Kutta methods [J].
Bendtsen, C .
APPLIED NUMERICAL MATHEMATICS, 1996, 21 (01) :1-8
[44]   Order conditions for partitioned Runge-Kutta methods [J].
Jackiewicz Z. ;
Vermiglio R. .
Applications of Mathematics, 2000, 45 (04) :301-316
[46]   Order conditions for Volterra Runge-Kutta methods [J].
Garrappa, Roberto .
APPLIED NUMERICAL MATHEMATICS, 2010, 60 (05) :561-573
[47]   HIGHER ORDER COMPOSITION RUNGE-KUTTA METHODS [J].
Chen, D. J. L. ;
Chang, J. C. ;
Cheng, C. H. .
TAMKANG JOURNAL OF MATHEMATICS, 2008, 39 (03) :199-211
[48]   Generalizations of the Stage Order of Runge-Kutta Methods [J].
Skvortsov, L. M. .
COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2024, 64 (12) :2796-2812
[49]   Approximate LQ Optimal Control Using High-Order Symplectic Partitioned Runge-Kutta Methods [J].
Herrmann-Wicklmayr, Markus ;
Flasskamp, Kathrin .
2021 EUROPEAN CONTROL CONFERENCE (ECC), 2021, :2438-2443
[50]   A COMPARISON OF HIGH-ORDER EXPLICIT RUNGE-KUTTA, EXTRAPOLATION, AND DEFERRED CORRECTION METHODS IN SERIAL AND PARALLEL [J].
Ketcheson, David I. ;
bin Waheed, Umair .
COMMUNICATIONS IN APPLIED MATHEMATICS AND COMPUTATIONAL SCIENCE, 2014, 9 (02) :175-200