POLYHEDRAL NORMS IN AN INFINITE-DIMENSIONAL SPACE

被引:15
作者
DURIER, R
PAPINI, PL
机构
[1] UNIV BOURGOGNE, ANAL NUMER LAB, F-21004 DIJON, FRANCE
[2] UNIV BOLOGNA, DIPARTIMENTO MATEMAT, I-40127 BOLOGNA, ITALY
关键词
D O I
10.1216/rmjm/1181072528
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In finite dimensional linear spaces, polyhedral norms have been widely studied. Many extensions of such notions to infinite-dimensional spaces are possible: in fact, several different definitions have been given, leading to different classes of spaces; the comparison among these classes has not been studied in detail. In the present paper we prove equivalences and inclusions among the classes considered in this context, and we indicate some counterexamples.
引用
收藏
页码:863 / 875
页数:13
相关论文
共 24 条
[1]  
Amir D., 1972, J APPROX THEORY, V6, P176, DOI [10.1016/0021-9045(72)90073-1, DOI 10.1016/0021-9045(72)90073-1]
[2]   POLYHEDRALITY OF INFINITE DIMENSIONAL CUBES [J].
ARMSTRONG, TE .
PACIFIC JOURNAL OF MATHEMATICS, 1977, 70 (02) :297-307
[3]  
BASTIANI A, 1958, CR HEBD ACAD SCI, V247, P1943
[4]  
Bastiani A., 1959, ANN I FOURIER, V9, P249, DOI [10.5802/aif.92, DOI 10.5802/AIF.92]
[5]  
Brosowski B., 1974, Journal of Approximation Theory, V10, P245, DOI 10.1016/0021-9045(74)90122-1
[6]  
DAY M. M, 1973, NORMED LINEAR SPACES
[7]  
DEUTSCH F, 1971, LINEAR OPERATORS APP
[8]   SETS OF EFFICIENT POINTS IN A NORMED SPACE [J].
DURIER, R ;
MICHELOT, C .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1986, 117 (02) :506-528
[9]   A FORM OF INFINITE-DIMENSIONAL POLYTOPES [J].
FONF, VP .
FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 1984, 18 (02) :154-155
[10]   POLYHEDRAL BANACH-SPACES [J].
FONF, VP .
MATHEMATICAL NOTES, 1981, 30 (3-4) :809-813