On an optimal control problem for a nonlinear system

被引:0
作者
Surkov, P. G. [1 ,2 ]
机构
[1] Ural Fed Univ, Physicomath Sci, Ekaterinburg, Russia
[2] Russian Acad Sci, Inst Math & Mech, Ural Branch, Physicomath Sci, Ekaterinburg, Russia
来源
TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN | 2013年 / 19卷 / 04期
关键词
integrated assessment model for evaluating greenhouse gas reduction policies; optimal control; Pontryagin maximum principle;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a regional economic growth model described by a system of nonlinear differential equations and pose a problem of finding an optimal control for maximizing the wealth of the region. The problem is analyzed by means of the Pontryagin maximum principle. A numerical solution for a specific region is found, and the results are compared with the basic scenario data of the integrated assessment model MERGE.
引用
收藏
页码:241 / 249
页数:9
相关论文
共 8 条
  • [1] Digas B., 2009, IR09001 IIASA
  • [2] Digas B. V., 2010, International Journal of Environmental Policy and Decision Making, V1, P51
  • [3] A MODEL FOR EVALUATING REGIONAL AND GLOBAL EFFECTS OF GHG REDUCTION POLICIES
    MANNE, A
    MENDELSOHN, R
    RICHELS, R
    [J]. ENERGY POLICY, 1995, 23 (01) : 17 - 34
  • [4] Manne A., 2000, NEW HORIZONS ENV EC, P187
  • [5] MIKHALEVICH VS, 1987, METODY NEVYPUKLOI OP
  • [6] Pontryagin L.S., 1983, MATEMATICHESKAYA TEO
  • [7] Rutherford TF, 1999, INT SER OPER RES MAN, V18, P139
  • [8] SAMARSKII AA, 1989, CHISLENNYE METODY