SCHUR PARAMETER PENCILS FOR THE SOLUTION OF THE UNITARY EIGENPROBLEM

被引:59
作者
BUNSEGERSTNER, A
ELSNER, L
机构
[1] Universität Bielefeld Fakultät für Mathematik, 4800 Bielefeld 1
关键词
D O I
10.1016/0024-3795(91)90402-I
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let U - lambda-V be an n X n pencil with unitary matrices U and V. An algorithm is presented which reduces U and V simultaneously to unitary block diagonal matrices G(o) = Q(H)UP and G(e) = Q(H)VP with block size at most two. It is an O(n3) process using Householder eliminations, and it is backward stable. In the special case V = I the block diagonal matrices G(o), G(e)H can be normalized so that their entries are just the Schur parameters of the Hessenberg condensed form of U. We call G(o) - lambda-G(e) a Schur parameter pencil. It can also be derived from U, V by a Lanczos-like process. For the solution of the eigenvalue problem for G(o) - lambda-G(e) a QR-type algorithm can be developed based on this unitary reduction of a pencil U - lambda-V to a Schur parameter pencil. The condensed form is preserved throughout the process. Each iteration step needs only O(n) operations. This method of solving the unitary eigenvalue problem seems to be the closest possible analogy to the QR method for the Hermitian eigenvalue problem.
引用
收藏
页码:741 / 778
页数:38
相关论文
共 19 条
[1]  
Ammar G. S., 1987, Proceedings of the SPIE - The International Society for Optical Engineering, V826, P143
[2]  
AMMAR GS, BSC8851 BERG SCI CTR
[3]  
AMMAR GS, 1986, 25TH P IEEE C DEC CO
[4]  
CYBENKO G., 1985, P PRINCETON C INFORM, P587
[5]  
DEKKER TJ, 1971, LINEAR ALGEBRA APPL, V4, P137
[6]  
DELSARTE P, 1982, PHILIPS J RES, V37, P277
[7]  
EBERLEIN PJ, 1975, SIAM J NUMER ANAL, V12, P421
[8]   QR TRANSFORMATION - A UNITARY ANALOG TO LR TRANSFORMATION .1. [J].
FRANCIS, J .
COMPUTER JOURNAL, 1961, 4 :265-&
[9]  
FRANCIS J, 1962, COMPUT J, V5, P332
[10]  
Golub G.H., 1983, MATRIX COMPUTATIONS