AN IMPROVED NANOSCALE TRANSMISSION LINE MODEL OF MICROTUBULE: THE EFFECT OF NONLINEARITY ON THE PROPAGATION OF ELECTRICAL SIGNALS

被引:13
作者
Sekulic, Dalibor L. [1 ]
Sataric, Miljko V. [1 ]
机构
[1] Univ Novi Sad, Fac Tech Sci, Novi Sad, Serbia
关键词
microtubule; electrodynamic properties; nonlinear transmission line; voltage equation; soliton wave;
D O I
10.2298/FUEE1501133S
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In what manner the microtubules, cytoskeletal nanotubes, handle and process electrical signals is still uncompleted puzzle. These bio-macromolecules have highly charged surfaces that enable them to conduct electric signals. In the context of electrodynamic properties of microtubule, the paper proposes an improved electrical model for divalent ions (Ca2+ and Mg2+) based on the cylindrical structure of microtubule with nano-pores in its wall. Relying on our earlier ideas, we represent this protein-based nanotube with the surrounding ions as biomolecular nonlinear transmission line with corresponding nanoscale electric elements in it. One of the key aspects is the nonlinearity of associated capacitance due to the effect of shrinking/stretching and oscillation of Cterminal tails. Accordingly, a characteristic voltage equation of electrical model of microtubule and influence of capacitance nonlinearity on the propagation of electrical pulses are numerically analyzed here.
引用
收藏
页码:133 / 142
页数:10
相关论文
共 15 条
[1]   Electrostatics of nanosystems: Application to microtubules and the ribosome [J].
Baker, NA ;
Sept, D ;
Joseph, S ;
Holst, MJ ;
McCammon, JA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (18) :10037-10041
[2]   Model of ionic currents through microtubule nanopores and the lumen [J].
Freedman, Holly ;
Rezania, Vahid ;
Priel, Avner ;
Carpenter, Eric ;
Noskov, Sergei Y. ;
Tuszynski, Jack A. .
PHYSICAL REVIEW E, 2010, 81 (05)
[3]   Multi-mode electro-mechanical vibrations of a microtubule: In silico demonstration of electric pulse moving along a microtubule [J].
Havelka, Daniel ;
Cifra, Michal ;
Kucera, Ondrej .
APPLIED PHYSICS LETTERS, 2014, 104 (24)
[4]   Engineering tubulin: microtubule functionalization approaches for nanoscale device applications [J].
Malcos, Jennelle L. ;
Hancock, William O. .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2011, 90 (01) :1-10
[6]   Microtubule architecture: inspiration for novel carbon nanotube-based biomimetic materials [J].
Pampaloni, Francesco ;
Florin, Ernst-Ludwig .
TRENDS IN BIOTECHNOLOGY, 2008, 26 (06) :302-310
[7]   A biopolymer transistor: Electrical amplification by microtubules [J].
Priel, Avner ;
Ramos, Arnolt J. ;
Tuszynski, Jack A. ;
Cantiello, Horacio F. .
BIOPHYSICAL JOURNAL, 2006, 90 (12) :4639-4643
[8]   Multi-level memory-switching properties of a single brain microtubule [J].
Sahu, Satyajit ;
Ghosh, Subrata ;
Hirata, Kazuto ;
Fujita, Daisuke ;
Bandyopadhyay, Anirban .
APPLIED PHYSICS LETTERS, 2013, 102 (12)
[9]   Solitonic Ionic Currents Along Microtubules [J].
Sataric, M. V. ;
Sekulic, D. ;
Zivanov, M. .
JOURNAL OF COMPUTATIONAL AND THEORETICAL NANOSCIENCE, 2010, 7 (11) :2281-2290
[10]   Soliton-like Pulses along Electrical Nonlinear Transmission Line [J].
Sekulic, D. L. ;
Sataric, M. V. ;
Zivanov, M. B. ;
Bajic, J. S. .
ELEKTRONIKA IR ELEKTROTECHNIKA, 2012, 121 (05) :53-58