ON GLOBAL SMOOTH SOLUTIONS TO THE ONE-DIMENSIONAL EQUATIONS OF NONLINEAR INHOMOGENEOUS THERMOELASTICITY

被引:15
作者
JIANG, S
机构
[1] Institut für Angewandte Mathematik der Universität Bonn, 5300 Bonn 1
关键词
NONLINEAR THERMOELASTICITY; INHOMOGENEOUS MATERIALS; GLOBAL EXISTENCE; THE ENERGY METHOD;
D O I
10.1016/0362-546X(93)90154-K
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
[No abstract available]
引用
收藏
页码:1245 / 1256
页数:12
相关论文
共 50 条
[1]   GLOBAL-SOLUTIONS OF THE NEUMANN PROBLEM IN ONE-DIMENSIONAL NONLINEAR THERMOELASTICITY [J].
JIANG, S .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1992, 19 (02) :107-121
[2]   AN UNCOUPLED NUMERICAL SCHEME FOR THE EQUATIONS OF NONLINEAR ONE-DIMENSIONAL THERMOELASTICITY [J].
JIANG, S .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1991, 34 (02) :135-144
[3]   GLOBAL SOLVABILITY AND EXPONENTIAL STABILITY IN ONE-DIMENSIONAL NONLINEAR THERMOELASTICITY [J].
RACKE, R ;
SHIBATA, Y ;
ZHENG, SM .
QUARTERLY OF APPLIED MATHEMATICS, 1993, 51 (04) :751-763
[4]   Global existence and exponential stability in one-dimensional nonlinear thermoelasticity with thermal memory [J].
Rivera, JEM ;
Qin, YM .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2002, 51 (01) :11-32
[5]   ON GLOBAL SOLUTIONS IN ONE-DIMENSIONAL THERMOELASTICITY WITH SECOND SOUND IN THE HALF LINE [J].
Hu, Yuxi ;
Wang, Na .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2015, 14 (05) :1671-1683
[6]   Blow-up of solutions to the Cauchy problem in nonlinear one-dimensional thermoelasticity [J].
Qin, YM ;
Rivera, JM .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2004, 292 (01) :160-193
[7]   Numerical solution for a nonlinear, one-dimensional problem of thermoelasticity [J].
Rawy, EK ;
Iskandar, L ;
Ghaleb, AF .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1998, 100 (01) :53-76
[8]   Global smooth solutions of the equations of a viscous, heat-conducting, one-dimensional gas with density-dependent viscosity [J].
Jiang, S .
MATHEMATISCHE NACHRICHTEN, 1998, 190 :169-183
[9]   On the symmetries and similarity solutions of one-dimensional, non-linear thermoelasticity [J].
Kalpakides, VK .
INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 2001, 39 (16) :1863-1879
[10]   On the global existence of solution to one-dimensional fourth order nonlinear Sobolev type equations [J].
Khudaverdiyev, K. I. ;
Alieva, A. G. .
APPLIED MATHEMATICS AND COMPUTATION, 2010, 217 (01) :347-354