GENERALIZED VECTOR VARIATIONAL INEQUALITY AND FUZZY EXTENSION

被引:57
作者
LEE, GM
KIM, DS
LEE, BS
CHO, SJ
机构
[1] NATL FISHERIES UNIV PUSAN,DEPT APPL MATH,PUSAN 608737,SOUTH KOREA
[2] KYUNGSUNG UNIV,DEPT MATH,PUSAN 608736,SOUTH KOREA
关键词
D O I
10.1016/0893-9659(93)90077-Z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A generalized vector variational inequality (GVVI) is considered. We establish the existence theorem for (GVVI) under assumptions of C-pseudomonotonicity and V-hemicontinuity. From our existence theorem, we obtain the fuzzy extension of a result of Chen and Yang.
引用
收藏
页码:47 / 51
页数:5
相关论文
共 17 条
[1]   ON VARIATIONAL-INEQUALITIES FOR FUZZY MAPPINGS [J].
CHANG, SS ;
ZHU, YG .
FUZZY SETS AND SYSTEMS, 1989, 32 (03) :359-367
[2]   APPROXIMATE DUAL AND APPROXIMATE VECTOR VARIATIONAL INEQUALITY FOR MULTIOBJECTIVE OPTIMIZATION [J].
CHEN, GY ;
CRAVEN, BD .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 1989, 47 :418-423
[3]   EXISTENCE OF SOLUTIONS FOR A VECTOR VARIATIONAL INEQUALITY - AN EXTENSION OF THE HARTMANN-STAMPACCHIA THEOREM [J].
CHEN, GY .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1992, 74 (03) :445-456
[4]  
CHEN GY, 1990, J MATH ANAL APPL, V153, P136
[5]  
CHEN GY, 1990, Z OPERATIONS RES, V3, P1
[6]  
Chen GY, 2005, LECT NOTES EC MATH S, V285, P408
[7]   PSEUDOMONOTONE COMPLEMENTARITY-PROBLEMS IN HILBERT-SPACE [J].
COTTLE, RW ;
YAO, JC .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1992, 75 (02) :281-295
[8]   A GENERALIZATION OF TYCHONOFF FIXED POINT THEOREM [J].
FAN, K .
MATHEMATISCHE ANNALEN, 1961, 142 (03) :305-310
[9]  
Giannessi F., 1980, VARIATIONAL INEQUALI, P151
[10]  
HARTMAN GJ, 1966, ACTA MATH, V115, P271