MINIMAL SELF-JOININGS AND POSITIVE TOPOLOGICAL-ENTROPY

被引:3
作者
BLANCHARD, F
GLASNER, E
KWIATKOWSKI, J
机构
[1] UNIV MIKOLAYA KOPERNIKA,INST MATEMAT,PL-87100 TORUN,POLAND
[2] TEL AVIV UNIV,SCH MATH,IL-69978 TEL AVIV,ISRAEL
来源
MONATSHEFTE FUR MATHEMATIK | 1995年 / 120卷 / 3-4期
关键词
D O I
10.1007/BF01294858
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that the properties of almost minimal self-joinings and strong almost minimal self-joinings, introduced by del Junco in Topological Dynamics, are compatible with positive topological entropy, as opposed to the stronger property of minimal self-joinings. This is done both by proving existence theorems and by explicitly constructing some symbolic systems having these properties, which are modifications of the Chacon system. It is shown furthermore that these systems have no non-trivial factors with completely positive topological entropy.
引用
收藏
页码:205 / 222
页数:18
相关论文
共 17 条
[1]   A CONDITION FOR ZERO ENTROPY [J].
AUSLANDER, J ;
BERG, K .
ISRAEL JOURNAL OF MATHEMATICS, 1990, 69 (01) :59-64
[2]  
AUSLANDER J, 1988, ERGOD THEOR DYN, V8, P157
[3]   A DISJOINTNESS THEOREM INVOLVING TOPOLOGICAL-ENTROPY [J].
BLANCHARD, F .
BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 1993, 121 (04) :465-478
[4]  
BULATEK W, 1992, STUD MATH, V103, P133
[5]  
DELJUNCO A, 1987, ERGOD THEOR DYN SYST, V7, P211
[6]   ON GENERIC POINTS IN THE CARTESIAN SQUARE OF CHACON TRANSFORMATION [J].
DELJUNCO, A ;
KEANE, M .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1985, 5 (MAR) :59-69
[7]  
DENKER M, 1975, LECT NOTES MATH, V527
[8]  
DOWNAROWICZ T, IN PRESS COLLOQ MATH
[9]   ON ALMOST 1-1 EXTENSIONS [J].
FURSTENBERG, H ;
WEISS, B .
ISRAEL JOURNAL OF MATHEMATICS, 1989, 65 (03) :311-322
[10]  
GLASNER E, IN PRESS B SOC MATH