ON THE COMPLEXITY OF FINITE RANDOM FUNCTIONS

被引:5
作者
FEIGE, U
机构
[1] Department of Applied Mathematics, The Weizmann Institute, Rehovot
关键词
COMPUTATIONAL COMPLEXITY; RANDOM FUNCTIONS;
D O I
10.1016/0020-0190(92)90102-2
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We describe a method for relating the complexity of random finite functions to the complexity of the most complex finite functions. Using this method we derive an alternative proof for a known OMEGA(n log n) lower bound on the depth of noisy Boolean decision trees that compute random functions.
引用
收藏
页码:295 / 296
页数:2
相关论文
共 3 条
[1]  
FEIGE U, 1990, PROCEEDINGS OF THE TWENTY SECOND ANNUAL ACM SYMPOSIUM ON THEORY OF COMPUTING, P128, DOI 10.1145/100216.100230
[2]  
REISCHUK R, 1991, PROCEEDINGS - 32ND ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, P602, DOI 10.1109/SFCS.1991.185425
[3]  
SHANNON CE, BELL SYST TECH J, V28, P59