Versatile compressive microscope for hyperspectral transmission and fluorescence lifetime imaging

被引:5
作者
Klein, Lukas [1 ,2 ]
Kristoffersen, Arne S. [3 ]
Tous, Jan [4 ]
Zidek, Karel [1 ]
机构
[1] Czech Acad Sci, Inst Plasma Phys, Reg Ctr Special Opt & Optoelect Syst TOPTEC, Slovankou 1782-3, Prague 18200 8, Czech Republic
[2] Tech Univ Liberec, Fac Mechatron Informat & Interdisciplinary Studie, Studentska 1402-2, Liberec 46117, Czech Republic
[3] Univ Bergen, Dept Phys & Technol, POB 7803, N-5020 Bergen, Norway
[4] Spol Sro, Crytur, Lukach 2283, Turnov 51101, Czech Republic
关键词
Hyperspectral imaging;
D O I
10.1364/OE.455049
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Increasing demand for multimodal characterization and imaging of new materials entails the combination of various methods in a single microscopic setup. Hyperspectral imaging of transmission spectra or photoluminescence (PL) decay imaging count among the most used methods. Nevertheless, these methods require very different working conditions and instrumentation. Therefore, combining the methods into a single microscopic system is seldom implemented. Here we demonstrate a novel versatile microscope based on single-pixel imaging, where we use a simple optical configuration to measure the hyperspectral information, as well as fluorescence lifetime imaging (FLIM). The maps are inherently spatially matched and can be taken with spectral resolution limited by the resolution of the used spectrometer (3 nm) or temporal resolution set by PL decay measurement (120 ps). We verify the system's performance by its comparison to the standard FLIM and non-imaging transmission spectroscopy. Our approach enabled us to switch between a broad field-of-view and micrometer resolution without changing the optical configuration. At the same time, the used design opens the possibility to add a variety of other characterization methods. This article demonstrates a simple, affordable way of complex material studies with huge versatility for the imaging parameters. (C) 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement
引用
收藏
页码:15708 / 15720
页数:13
相关论文
共 35 条
[11]   On-the-go hyperspectral imaging for the in-field estimation of grape berry soluble solids and anthocyanin concentration [J].
Gutierrez, S. ;
Tardaguila, J. ;
Fernandez-Novales, J. ;
Diago, M. P. .
AUSTRALIAN JOURNAL OF GRAPE AND WINE RESEARCH, 2019, 25 (01) :127-133
[12]  
Guzzi D, 2017, INT C SPACE OPTICS I, P92
[13]  
Hamamatsu Photonics K.K., 2008, GUIDE STREAK CAMERAS
[14]   Fluorescence lifetime imaging via spatio-temporal speckle patterns in a single-pixel camera configuration [J].
Junek, J. ;
Zidek, K. .
OPTICS EXPRESS, 2021, 29 (04) :5538-5551
[15]   Random temporal laser speckles for the robust measurement of sub-microsecond photoluminescence decay [J].
Junek, J. ;
Ondic, L. ;
Zidek, K. .
OPTICS EXPRESS, 2020, 28 (08) :12363-12372
[16]   Collection of micromirror-modulated light in the single-pixel broadband hyperspectral microscope [J].
Klein, Lukas ;
Zidek, Karel .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2020, 91 (06)
[17]   Testing Fluorescence Lifetime Standards using Two-Photon Excitation and Time-Domain Instrumentation: Fluorescein, Quinine Sulfate and Green Fluorescent Protein [J].
Kristoffersen, Arne S. ;
Erga, Svein R. ;
Hamre, Borge ;
Frette, Oyvind .
JOURNAL OF FLUORESCENCE, 2018, 28 (05) :1065-1073
[18]   Testing Fluorescence Lifetime Standards using Two-Photon Excitation and Time-Domain Instrumentation: Rhodamine B, Coumarin 6 and Lucifer Yellow [J].
Kristoffersen, Arne S. ;
Erga, Svein R. ;
Hamre, Borge ;
Frette, Oyvind .
JOURNAL OF FLUORESCENCE, 2014, 24 (04) :1015-1024
[19]  
Lakowicz J. R., 2006, PRINCIPLES FLUORESCE, P337, DOI DOI 10.1007/978-0-387-46312-4
[20]  
Li, 2009, TV MINIMIZATION AUGM