A NOTE ON INVARIANCE IN 3-MODE FACTOR ANALYSIS

被引:35
作者
BLOXOM, B
机构
关键词
D O I
10.1007/BF02289329
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Previous results of the application of Lawley's selection theorem to the common factor analysis model are extended to a revision of Tucker's three-mode principal components model. If the regression of the three-mode manifest variates on variates used to select subpopulations is both linear and homoscedastic, the two factor pattern matrices, the core matrix, and the residual variance-covariance matrix in the three-mode model can all be assumed to be invariant across subpopulations. The implication of this finding for simple structure is discussed. © 1968 Psychometric Society.
引用
收藏
页码:347 / &
相关论文
共 7 条
[1]  
BELLMAN R, INTRODUCTION MATRIX
[2]  
HARRIS CW, PROBLEMS MEASURIN ED, P122
[3]  
Lawley D. N., 1943, P ROYAL SOC EDINBURG, V62, P28, DOI 10.1017/ S0080454100006385
[4]   NOTES ON FACTORIAL INVARIANCE [J].
MEREDITH, W .
PSYCHOMETRIKA, 1964, 29 (02) :177-185
[5]  
Thurstone LL, MULTIPLE FACTOR ANAL
[6]   SOME MATHEMATICAL NOTES ON 3-MODE FACTOR ANALYSIS [J].
TUCKER, LR .
PSYCHOMETRIKA, 1966, 31 (03) :279-279
[7]  
TUCKER LR, PROBLEMS MEASURING C, P122