HARMONIC HYPERGEOMETRIC FUNCTIONS

被引:2
作者
Al-Khal, R. A. [1 ]
Al-Kharsani, H. A. [1 ]
机构
[1] Girls Coll, Dept Math, Fac Sci, POB 838, Dammam, Saudi Arabia
来源
TAMKANG JOURNAL OF MATHEMATICS | 2006年 / 37卷 / 03期
关键词
Planer harmonic mappings; hypergeometric functions; convolution multipliers; harmonic functions; distortion bounds;
D O I
10.5556/j.tkjm.37.2006.172
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we try to uncover some of the inequalities associating hypergeometric functions with planer harmonic mappings. Sharp coefficient relations, distortion theorems and neighborhood are given for these functions. Furthermore, convolution products are considered.
引用
收藏
页码:273 / 283
页数:11
相关论文
共 9 条
[1]  
Ahuja O. P., 2004, J INEQUAL PURE APPL, V5, P1
[2]   Neighborhoods of a class of analytic functions with negative coefficients [J].
Altintas, O ;
Özkan, Ö ;
Srivastava, HM .
APPLIED MATHEMATICS LETTERS, 2000, 13 (03) :63-67
[3]   STARLIKE AND PRESTARLIKE HYPERGEOMETRIC-FUNCTIONS [J].
CARLSON, BC ;
SHAFFER, DB .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1984, 15 (04) :737-745
[4]  
CLUNIE J, 1984, ANN ACAD SCI FENN-M, V9, P3
[5]  
Jakubowski Z. J., 1993, 14 K TEOR ZAG EKSTR, P17
[6]   A subclass of harmonic univalent functions with negative coefficients [J].
Karpuzogullari, SY ;
Öztürk, M ;
Yamankaradeniz, M .
APPLIED MATHEMATICS AND COMPUTATION, 2003, 142 (2-3) :469-476
[7]  
Merkes E. P., 1961, P AM MATH SOC, V12, P885, DOI [10.1090/s0002-9939-1961-0143950-1, DOI 10.1090/S0002-9939-1961-0143950-1]
[8]   NEIGHBORHOODS OF UNIVALENT-FUNCTIONS [J].
RUSCHEWEYH, S .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1981, 81 (04) :521-527
[9]  
Srivastava HM., 1984, TREATISE GENERATING