KOSTKA-SHOJI POLYNOMIALS AND LUSZTIG'S CONVOLUTION DIAGRAM

被引:5
作者
Finkelberg, Michael [1 ,2 ,3 ]
Ionov, Andrei [1 ]
机构
[1] Natl Res Univ, Higher Sch Econ, Dept Math, 6 Usacheva St, Moscow 119048, Russia
[2] RAS, Inst Informat Transmiss Problems, Moscow, Russia
[3] Skolkovo Inst Sci & Technol, Moscow, Russia
来源
BULLETIN OF THE INSTITUTE OF MATHEMATICS ACADEMIA SINICA NEW SERIES | 2018年 / 13卷 / 01期
关键词
Kostka-Shoji polynomials; cyclic quiver; convolution diagram; Frobenius splitting; affine flag variety; Bott-Samelson-Demazure-Hansen resolution;
D O I
10.21915/BIMAS.2018102
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We propose an r-variable version of Kostka-Shoji polynomials K-lambda mu for r-multipartitions lambda, mu. Our version has positive integral coefficients and encodes the graded multiplicities in the space of global sections of a line bundle over Lusztig's iterated convolution diagram for the cyclic quiver (A) over tilde (r-1).
引用
收藏
页码:31 / 42
页数:12
相关论文
共 18 条
[1]  
Achar P., IMPLEMENTATION GEN L
[2]   Orbit closures in the enhanced nilpotent cone [J].
Achar, Pramod N. ;
Henderson, Anthony .
ADVANCES IN MATHEMATICS, 2008, 219 (01) :27-62
[3]  
BRION M, 2005, PROGR MATH, V231
[4]  
Brylinski R. K., 1989, J AM MATH SOC, V2, P517, DOI 10.2307/1990941
[5]   Mirabolic affine Grassmannian and character sheaves [J].
Finkelberg, Michael ;
Ginzburg, Victor ;
Travkin, Roman .
SELECTA MATHEMATICA-NEW SERIES, 2009, 14 (3-4) :607-628
[6]  
Hu Yue, ARXIV170407947
[8]  
Lusztig, 1991, J AM MATH SOC, V4, P365
[9]  
LUSZTIG G, 1983, ASTERISQUE, P208
[10]   GREEN POLYNOMIALS AND SINGULARITIES OF UNIPOTENT CLASSES [J].
LUSZTIG, G .
ADVANCES IN MATHEMATICS, 1981, 42 (02) :169-178