BROWNIAN-MOTION FROM DETERMINISTIC DYNAMICS

被引:51
作者
BECK, C
机构
[1] Institut für Theoretische Physik, RWTH
来源
PHYSICA A | 1990年 / 169卷 / 02期
关键词
D O I
10.1016/0378-4371(90)90173-P
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Certain deterministic dynamical systems exhibit a transition from non-Gaussian chaotic to Brownian motion behavior when a suitable scaling limit is applied. For a simple hyperbolic model system we analyze the structure of the corresponding strange attractor, determine the invariant measure and elucidate the transition scenario leading to a Gaussian stochastic process. © 1990.
引用
收藏
页码:324 / 336
页数:13
相关论文
共 47 条
[1]   FROM STOCHASTIC-PROCESSES TO THE HYDRODYNAMIC EQUATIONS [J].
BECK, C ;
ROEPSTORFF, G .
PHYSICA A, 1990, 165 (02) :270-278
[2]   ERGODIC PROPERTIES OF A KICKED DAMPED PARTICLE [J].
BECK, C .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1990, 130 (01) :51-60
[3]   UPPER AND LOWER BOUNDS ON THE RENYI DIMENSIONS AND THE UNIFORMITY OF MULTIFRACTALS [J].
BECK, C .
PHYSICA D, 1990, 41 (01) :67-78
[4]   FROM DYNAMIC-SYSTEMS TO THE LANGEVIN EQUATION [J].
BECK, C ;
ROEPSTORFF, G .
PHYSICA A, 1987, 145 (1-2) :1-14
[5]  
BECK C, 1990, HIGHER CORRELATION F
[6]  
BECK C, 1988, THESIS RWTH AACHEN
[7]  
BECK C, 1990, THERMODYNAMIC FORMAL
[8]  
Billingsley P, 1968, CONVERGENCE PROBABIL
[9]  
BOHR T, 1988, DIRECTIONS CHAOS
[10]  
Bunimovich L. A., 1974, Theory of Probability and Its Applications, V19, P65, DOI 10.1137/1119006