Variable selection with genetic algorithm and multivariate adaptive regression splines in the presence of multicollinearity

被引:3
作者
Kilinc, Betul Kan [1 ]
Asikgil, Baris [2 ]
Erar, Aydin [2 ]
Yazici, Berna [1 ]
机构
[1] Anadolu Univ, Fac Sci, Dept Stat, Eskisehir, Turkey
[2] Mimar Sinan Fine Arts Univ, Fac Sci & Letters, Dept Stat, Istanbul, Turkey
来源
INTERNATIONAL JOURNAL OF ADVANCED AND APPLIED SCIENCES | 2016年 / 3卷 / 12期
关键词
Variable selection; Multicollinearity; Genetic algorithm; Multivariate adaptive regression splines;
D O I
10.21833/ijaas.2016.12.004
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, it is aimed to determine the true regressors explaining the dependent variable in multiple linear regression models and also to find the best model by using two different approaches in the presence of low, medium and high multicollinearity. These approaches compared in this study are genetic algorithm and multivariate adaptive regression splines. A comprehensive Monte Carlo experiment is performed in order to examine the performance of these approaches. This study exposes that nonparametric methods can be preferred for variable selection in order to obtain the best model when there is a multicollinearity problem in the small, medium or large data sets. (C) 2016 The Authors. Published by IASE. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页码:26 / 31
页数:6
相关论文
共 21 条
[1]  
Belsley D. A, 1991, CONDITIONING DIAGNOS
[2]  
De Boor C., 1978, PRACTICAL GUIDE SPLI, V27
[3]  
FAN JQ, 1995, J R STAT SOC B, V57, P371
[4]   MULTIVARIATE ADAPTIVE REGRESSION SPLINES [J].
FRIEDMAN, JH .
ANNALS OF STATISTICS, 1991, 19 (01) :1-67
[5]  
Goldberg D., 1989, GENETIC ALGORITHMS S
[6]   SELECTION OF VARIABLES FOR FITTING EQUATIONS TO DATA [J].
GORMAN, JW ;
TOMAN, RJ .
TECHNOMETRICS, 1966, 8 (01) :27-&
[7]  
Hastie T., 2008, ELEMENTS STAT LEARNI, V2nd, DOI [10.1007/978-0-387-84858-7_10, DOI 10.1007/978-0-387-84858-7]
[8]  
John H Holland, 1975, ADAPTATION NATURAL A
[9]   Penalized estimation of free-knot splines [J].
Lindstrom, MJ .
JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 1999, 8 (02) :333-352
[10]  
MANELA M, 1993, PROCEEDINGS OF THE FIFTH INTERNATIONAL CONFERENCE ON GENETIC ALGORITHMS, P549