Theorem concerning the singular points of ordinary linear differential equations

被引:1
作者
Birkhoff, GD [1 ]
机构
[1] Harvard Univ, Dept Math, Cambridge, MA USA
关键词
D O I
10.1073/pnas.1.12.578
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
引用
收藏
页码:578 / 581
页数:4
相关论文
共 50 条
[32]   HILBERT SPACE AND VARIATIONAL METHODS FOR SINGULAR LINEAR ORDINARY DIFFERENTIAL EQUATIONS [J].
STEIN, J .
NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 20 (01) :A118-A118
[33]   The singular points of differential equations [J].
Rosenblatt, A .
COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES, 1939, 209 :10-11
[34]   ORDINARY DIFFERENTIAL EQUATIONS AND SINGULAR INTEGRALS [J].
Crippa, Gianluca .
HYPERBOLIC PROBLEMS: THEORY, NUMERICS, APPLICATIONS, 2014, 8 :109-117
[35]   SINGULAR POINTS OF PLANAR ORDINARY DIFFERENTIAL SYSTEMS [J].
AGGARWAL, JK .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1967, 3 (02) :203-&
[36]   Finding Homoclinic and Heteroclinic Contours of Singular Points of Nonlinear Systems of Ordinary Differential Equations [J].
N. A. Magnitskii ;
S. V. Sidorov .
Differential Equations, 2003, 39 :1593-1602
[37]   Expansion theory associated with linear differential equations and their regular singular points [J].
Bristow, Leonard .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1931, 33 (1-4) :455-474
[38]   Examples of Parametrization of the Cauchy Problem for Systems of Ordinary Differential Equations with Limiting Singular Points [J].
E. B. Kuznetsov ;
S. S. Leonov .
Computational Mathematics and Mathematical Physics, 2018, 58 :881-897
[39]   Finding homoclinic and heteroclinic contours of singular points of nonlinear systems of ordinary differential equations [J].
Magnitskii, NA ;
Sidorov, SV .
DIFFERENTIAL EQUATIONS, 2003, 39 (11) :1593-1602
[40]   Examples of Parametrization of the Cauchy Problem for Systems of Ordinary Differential Equations with Limiting Singular Points [J].
Kuznetsov, E. B. ;
Leonov, S. S. .
COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2018, 58 (06) :881-897