Theorem concerning the singular points of ordinary linear differential equations

被引:1
作者
Birkhoff, GD [1 ]
机构
[1] Harvard Univ, Dept Math, Cambridge, MA USA
关键词
D O I
10.1073/pnas.1.12.578
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
引用
收藏
页码:578 / 581
页数:4
相关论文
共 50 条
[21]   A nonlocal problem for singular linear systems of ordinary differential equations [J].
Abramov, A. A. ;
Ul'yanova, V. I. ;
Yukhno, L. F. .
COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2011, 51 (07) :1146-1152
[22]   On a singular cauchy problem for systems of linear ordinary differential equations [J].
Kiguradze, IT .
DIFFERENTIAL EQUATIONS, 1996, 32 (02) :173-180
[23]   Oscillation of Linear Ordinary Differential Equations: On a Theorem of A. Grigoriev [J].
Sergei Yakovenko .
Journal of Dynamical and Control Systems, 2006, 12 :433-449
[24]   Oscillation of linear ordinary differential equations: On a theorem of A. Grigoriev [J].
Yakovenko, S .
JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS, 2006, 12 (03) :433-449
[26]   SEMIGROUP PERTURBATION THEOREM WITH APPLICATION TO A SINGULAR PERTURBATION PROBLEM IN NON-LINEAR ORDINARY DIFFERENTIAL-EQUATIONS [J].
KERTZ, RP .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1979, 31 (01) :1-15
[28]   Parametrization of the Cauchy problem for systems of ordinary differential equations with limiting singular points [J].
Kuznetsov, E. B. ;
Leonov, S. S. .
COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2017, 57 (06) :931-952
[29]   Parametrization of the Cauchy problem for systems of ordinary differential equations with limiting singular points [J].
E. B. Kuznetsov ;
S. S. Leonov .
Computational Mathematics and Mathematical Physics, 2017, 57 :931-952
[30]   A NUMERICAL METHOD OF FINDING PARTIALLY STABLE SINGULAR POINTS OF ORDINARY DIFFERENTIAL EQUATIONS [J].
KONONENK.AI ;
MILMAN, VD .
DOKLADY AKADEMII NAUK SSSR, 1968, 182 (06) :1271-&