ALGEBRAIC CONSTRUCTION OF CYCLIC CODES OVER Z(8) WITH A GOOD EUCLIDEAN MINIMUM DISTANCE

被引:6
作者
PIRET, PM
机构
[1] Canon Research Centre France S.A.
关键词
EUCLIDEAN DISTANCE; PHASE-SHIFT KEYING; Z(M)-MODULE; GROUP RING; CYCLIC CODE;
D O I
10.1109/18.382033
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Let S(8) denote the set of the eight admissible signals of an 8-PSK communication system. The alphabet S(8) is endowed with the structure of Z(8), the set of integers taken module 8, and codes are defined to be Z(8)-submodules of Z(8)(n). Three cyclic codes over Z(8) are then constructed, Their length is equal to 6, 8, and 7, and they, respectively, contain 64, 64, and 512 codewords. The square of their Euclidean minimum distance is equal to 8, 16 - 4 root 2 and 10 - 2 root 2, respectively. The size of the codes of length 6 and 7 can be doubled while the Euclidean minimum distance remains the same.
引用
收藏
页码:815 / 818
页数:4
相关论文
共 18 条
  • [1] Ungerboeck G., Channel coding with multilevel/phase signals, IEEE Trans. Inform. Theory, IT-28, pp. 55-67, (1982)
  • [2] Curtis C.W., Reiner I., Representation Theory of Finite Groups and Associative Algebras, (1966)
  • [3] Blake I.F., Codes over integer residue rings, Inform. Contr., 29, pp. 295-300, (1975)
  • [4] Spiegel E., Codes over Zm, Inform. Contr., 35, pp. 48-51, (1977)
  • [5] Spiegel E., Codes over Zm revisited, Inform. Contr., 37, pp. 100-104, (1978)
  • [6] Shankar P., On BCH codes over arbitrary integer rings, IEEE Trans. Inform. Theory, IT-25, pp. 480-483, (1979)
  • [7] Satyanarayana C., Lee metric codes over integer residue rings, IEEE Trans. Inform. Theory, IT-25, pp. 250-254, (1979)
  • [8] Nemirovskii E.E., Portnoi S.L., Matching block codes to a channel with phase shifts, Probl. Peredachii Inform., 22, pp. 27-34, (1986)
  • [9] Filho R.B., Farrell P.G., Coded modulation with convolutional codes over rings, Lecture Notes in Computer Science, 514, pp. 271-280, (1990)
  • [10] Kschischang F.R., de Buda P.G., Pasupathy S., Block coset codes for M-ary phase shift keying, IEEE J. Selected Areas Commun., 7, pp. 900-913, (1989)