EFFICIENT PARTITION TREES

被引:198
作者
MATOUSEK, J [1 ]
机构
[1] FREE UNIV BERLIN, W-1000 BERLIN 33, GERMANY
关键词
D O I
10.1007/BF02293051
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We prove a theorem on partitioning point sets in E(d) (d fixed) and give an efficient construction of partition trees based on it. This yields a simplex range searching structure with linear space, O(n log n) deterministic preprocessing time, and O(n1-1/d(log n)O(1)) query time. With O(n1 + delta)) preprocessing time, where delta is an arbitrary positive constant, a more complicated data structure yields query time O(n1-1/d(log log n)O(1)). This attains the lower bounds due to Chazelle [C1] up to polylogarithmic factors, improving and simplifying previous results of Chazelle et al. [CSW]. The partition result implies that, for r(d) < n1 - delta, a (1/r)-approximation of size O(r(d)) with respect to simplices for an n-point set in E(d) can be computed in O(n log r) deterministic time. A (1/r)-cutting of size O(r(d)) for a collection of n hyperplanes in E(d) can be computed in O(n log r) deterministic time, provided that r less-than-or-equal-to n1/(2d - 1).
引用
收藏
页码:315 / 334
页数:20
相关论文
共 30 条
  • [1] PARTITIONING ARRANGEMENTS OF LINES .2. APPLICATIONS
    AGARWAL, PK
    [J]. DISCRETE & COMPUTATIONAL GEOMETRY, 1990, 5 (06) : 533 - 573
  • [2] AGARWAL PK, 1992, 24TH P ACM S THEOR C
  • [3] AGARWAL PK, 1991, 2ND P WORKSH ALG DAT
  • [4] AGARWAL PK, 1992, IN PRESS 33RD P IEEE
  • [5] AGGARWAL A, 1990, 21ST P ACM S THEOR C, P331
  • [6] [Anonymous], 1987, EATCS MONOGRAPHS THE
  • [7] DECOMPOSABLE SEARCHING PROBLEMS
    BENTLEY, JL
    [J]. INFORMATION PROCESSING LETTERS, 1979, 8 (05) : 244 - 251
  • [8] A DETERMINISTIC VIEW OF RANDOM SAMPLING AND ITS USE IN GEOMETRY
    CHAZELLE, B
    FRIEDMAN, J
    [J]. COMBINATORICA, 1990, 10 (03) : 229 - 249
  • [9] THE POWER OF GEOMETRIC DUALITY
    CHAZELLE, B
    GUIBAS, LJ
    LEE, DT
    [J]. BIT, 1985, 25 (01): : 76 - 90
  • [10] QUASI-OPTIMAL RANGE SEARCHING IN SPACES OF FINITE VC-DIMENSION
    CHAZELLE, B
    WELZL, E
    [J]. DISCRETE & COMPUTATIONAL GEOMETRY, 1989, 4 (05) : 467 - 489