EIGENVALUES AND LINEAR QUASIRANDOM HYPERGRAPHS

被引:26
作者
Lenz, John [1 ]
Mubayi, Dhruv
机构
[1] Univ Illinois, Dept Math Stat & Comp Sci, Sci Off 322, Chicago, IL 60607 USA
来源
FORUM OF MATHEMATICS SIGMA | 2015年 / 3卷
关键词
D O I
10.1017/fms.2014.22
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let p(k) denote the partition function of k. For each k >= 2, we describe a list of p(k) - 1 quasirandom properties that a k-uniform hypergraph can have. Our work connects previous notions on linear hypergraph quasirandomness by Kohayakawa, Rodl, and Skokan, and by Conlon, Han, Person, and Schacht, and the spectral approach of Friedman and Wigderson. For each of the quasirandom properties that is described, we define the largest and the second largest eigenvalues. We show that a hypergraph satisfies these quasirandom properties if and only if it has a large spectral gap. This answers a question of Conlon, Han, Person, and Schacht. Our work can be viewed as a partial extension to hypergraphs of the seminal spectral results of Chung, Graham, and Wilson for graphs.
引用
收藏
页数:26
相关论文
共 44 条
[21]   ON THE 2ND EIGENVALUE OF HYPERGRAPHS [J].
FRIEDMAN, J ;
WIGDERSON, A .
COMBINATORICA, 1995, 15 (01) :43-65
[22]   SOME GRAPHS WITH SMALL 2ND EIGENVALUE [J].
FRIEDMAN, J .
COMBINATORICA, 1995, 15 (01) :31-42
[23]   Quasirandom groups [J].
Gowers, W. T. .
COMBINATORICS PROBABILITY & COMPUTING, 2008, 17 (03) :363-387
[24]   Hypergraph regularity and the multidimensional Szemeredi theorem [J].
Gowers, W. T. .
ANNALS OF MATHEMATICS, 2007, 166 (03) :897-946
[25]   Quasirandomness, counting and regularity for 3-uniform hypergraphs [J].
Gowers, WT .
COMBINATORICS PROBABILITY & COMPUTING, 2006, 15 (1-2) :143-184
[26]  
graphs Random, 1987, LMS LECTURE NOTES SE, V123, P173
[27]   Expander graphs and their applications [J].
Hoory, Shlomo ;
Linial, Nathan ;
Wigderson, Avi .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 43 (04) :439-561
[28]   A Hypergraph Regularity Method for Generalized Turan Problems [J].
Keevash, Peter .
RANDOM STRUCTURES & ALGORITHMS, 2009, 34 (01) :123-164
[29]   Hypergraphs, quasi-randomness, and conditions for regularity [J].
Kohayakawa, Y ;
Rödl, V ;
Skokan, J .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 2002, 97 (02) :307-352
[30]   Weak hypergraph regularity and linear hypergraphs [J].
Kohayakawa, Yoshiharu ;
Nagle, Brendan ;
Rodl, Vojtech ;
Schacht, Mathias .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2010, 100 (02) :151-160