ALGEBRAIC CLASSIFICATION OF REGGE POLES

被引:48
作者
DOMOKOS, G
TINDLE, GL
机构
来源
PHYSICAL REVIEW | 1968年 / 165卷 / 05期
关键词
D O I
10.1103/PhysRev.165.1906
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
引用
收藏
页码:1906 / &
相关论文
共 21 条
[1]   COMPLEX ANGULAR MOMENTA + MANY-PARTICLE STATES .I. PROPERTIES OF LOCAL REPRESENTATIONS OF ROTATION GROUP [J].
ANDREWS, M ;
GUNSON, J .
JOURNAL OF MATHEMATICAL PHYSICS, 1964, 5 (10) :1391-&
[2]   BOUND STATES + ANALYTIC PROPERTIES IN ANGULAR MOMENTUM [J].
DOMOKOS, G ;
SURANYI, P .
NUCLEAR PHYSICS, 1964, 54 (04) :529-&
[3]  
Domokos G., 1968, Communications in Mathematical Physics, V7, P160, DOI 10.1007/BF01648333
[4]  
DOMOKOS G, 1963, THESIS DUBNA
[5]  
DOMOKOS G, 1967, PHYS REV, V159, P1587
[6]   REGGE POLES AND UNEQUAL-MASS SCATTERING PROCESSES [J].
FREEDMAN, DZ ;
WANG, JM .
PHYSICAL REVIEW, 1967, 153 (05) :1596-&
[7]  
HERMANN R, 1966, LIE GROUPS PHYSICIST
[8]   ON THE GENERAL THEORY OF COLLISIONS FOR PARTICLES WITH SPIN [J].
JACOB, M ;
WICK, GC .
ANNALS OF PHYSICS, 1959, 7 (04) :404-428
[9]  
Joos H., 1962, FORTSCHRITTE PHYSIK, V10, P65, DOI DOI 10.1002/PROP.2180100302
[10]   KINEMATICS OF GENERAL SCATTERING PROCESSES AND THE MANDELSTAM REPRESENTATION [J].
KIBBLE, TWB .
PHYSICAL REVIEW, 1960, 117 (04) :1159-1162