CENTRAL CONFIGURATIONS WITH MANY SMALL MASSES

被引:52
作者
XIA, ZH
机构
[1] Department of Mathematics, Harvard University, Cambridge
基金
美国国家科学基金会;
关键词
D O I
10.1016/0022-0396(91)90137-X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
By using the method of analytical continuation, we find the exact numbers of central configurations for some open sets of n positive masses for any choice of n. It turns out that the numbers increase dramatically as n increases; e.g., for some open set of 18 positive masses, some 2.08766 × 1020 classes of distinctive central configurations are found. In the mean time, we obtained some results about the Hausdorff measure for the set of n positive masses where degenerate central configuration arises. © 1991.
引用
收藏
页码:168 / 179
页数:12
相关论文
共 12 条
[1]  
ARENSTORF R, CELESTIAL MECH, V28
[2]   SOME TOPOLOGY OF N-BODY PROBLEMS [J].
EASTON, RW .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1975, 19 (02) :258-269
[3]  
HALL GR, CENTRAL CONFIGURATIO
[4]  
MEYER K, BIFURCATIONS RELATIV
[5]  
MOECKEL R, 1985, ERGODIC THEORY DYNAM, V5
[6]   COLLINEAR RELATIVE EQUILIBRIA OF THE PLANAR N-BODY PROBLEM [J].
PALMORE, JI .
CELESTIAL MECHANICS, 1982, 28 (1-2) :17-24
[7]   CLASSIFYING RELATIVE EQUILIBRIA .1. [J].
PALMORE, JI .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 79 (05) :904-908
[8]   MEASURE OF DEGENERATE RELATIVE EQUILIBRIA .1. [J].
PALMORE, JI .
ANNALS OF MATHEMATICS, 1976, 104 (03) :421-429
[9]   ROLE AND THE PROPERTIES OF N BODY CENTRAL CONFIGURATIONS [J].
SAARI, DG .
CELESTIAL MECHANICS, 1980, 21 (01) :9-20