ON THE GLOBAL BIFURCATION FOR A CLASS OF DEGENERATE EQUATIONS

被引:18
作者
DRABEK, P [1 ]
机构
[1] UNIV W BOHEMIA, DEPT MATH, CS-30614 PLZEN, CZECHOSLOVAKIA
关键词
D O I
10.1007/BF01766290
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the nonlinear Dirichlet boundary value problems for the second order -(a(x)\u'(x)\p-2u'(x))' -lambdac(x)\u(x)\p-2u(x) = g(x, u(x), lambda), (a(x)\u''(x)\p-2u''(x))'' -lambdac(x)\u(x)\p-2u(x) = g(x, u(x), u, (x), lambda), with p greater-than-or-equal-to 2, a is-an-element-of C1, c is-an-element-of C, a, c > 0, g Caratheodory's function, and the partial differential -div (\delu\p-2delU) = lambda absolute value of p-2u + g(x, u(x), lambda) in OMEGA, u = 0 on partial derivative OMEGA, with p > 1, OMEGA c R(N) bounded domain. There is proved a global bifurcation result of Rabinowitz's type using the degree theoretical approach for the mappings acting from the Banach space X into its dual X*.
引用
收藏
页码:1 / 16
页数:16
相关论文
共 14 条
[1]   A NOTE ON DEGREE THEORY FOR GRADIENT MAPPINGS [J].
AMANN, H .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1982, 85 (04) :591-595
[2]  
ANANE A, 1987, CR ACAD SCI I-MATH, V305, P725
[3]   STRUCTURE OF SOLUTIONS OF NONLINEAR EIGENVALUE PROBLEMS [J].
DANCER, EN .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1974, 23 (11) :1069-1076
[4]  
Drabek P., 1980, CASOPIS PEST MAT, V105, P167
[5]  
FUCIK S, 1973, LECTURE NTOES MATH, V346
[6]  
Kratochv'il A, 1971, COMMENT MATH U CAROL, V12, P639
[7]  
LIBOURTY L, 1964, TRAITE GLACEOLOGIE
[8]  
LIBOURTY L, 1965, TRAITE GLACEOLOGIE
[9]  
NECHAS I, 1971, DOKL AKAD NAUK SSSR+, V201, P1045
[10]  
PELLISIER MC, 1979, C R ACAD SCI PARIS A, V279, P531