THE NUMBER OF LATTICE POINTS WITHIN A CONTOUR AND VISIBLE FROM THE ORIGIN

被引:9
作者
HENSLEY, D
机构
[1] Texas A and M University, College Station, TX
关键词
D O I
10.2140/pjm.1994.166.295
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The main result is an estimate for the number P(r) of relatively prime pairs (a, b) of integers within a contour. When specialized to the contour x(2) + y(2) = r this estimate gives P(r)= (6/pi)r + (without the RH, O-epsilon(r(1/2)exp(-(log r)((3/5)+epsilon))) or with the RH O(epsilon)r((51+epsilon)/100)). A similar estimate, with the same sort of error, is obtained for the number of relatively prime pairs (a,b) of positive integers so that ab less than or equal to r. The error term for a general contour depends on the maximal value of the radius of curvature of the bounding contour.
引用
收藏
页码:295 / 304
页数:10
相关论文
共 6 条
  • [1] BIAGIOLLI A, COMMUNICATION
  • [2] CHAIX H, 1972, CR ACAD SC PARIS A, V27, P883
  • [3] Fraser W., 1962, MATH COMP, V16, P282
  • [4] Ivic A., 1985, THEORY RIEMANN ZETA
  • [5] IWANIEC H, IN PRESS DIVISOR CIR
  • [6] ODLYZKO AM, 1985, J REINE ANGEW MATH, V357, P138