Experiments on growth series of braid groups

被引:0
作者
Fromentin, Jean [1 ]
机构
[1] Univ Littoral Cote dOpale, UR 2597, LMPA, Lab Math Pures & Appl Joseph Liouville, F-62100 Calais, France
关键词
Braid group; Spherical growth series; Geodesic growth series; Algorithm;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce an algorithmic framework to investigate spherical and geodesic growth series of braid groups relatively to the Artin's or Birman-Ko-Lee's generators. We present our experimentations in the case of three and four strands and conjecture rational expressions for the spherical growth series with respect to the Birman-Ko-Lee's generators.(c) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页码:232 / 259
页数:28
相关论文
共 26 条
[1]  
Albenque M., 2007, ELECT NOTES DISCRETE, V29, P225
[2]  
Albenque M., 2008, THESIS U PARIS DIDER
[3]  
Albenque M., 2009, 21 INT C FORMAL POWE, P25
[4]  
[Anonymous], 2020, CALCULCO PLATEFORM
[5]   THEORY OF BRAIDS [J].
ARTIN, E .
ANNALS OF MATHEMATICS, 1947, 48 (01) :101-125
[6]   The dual braid monoid [J].
Bessis, D .
ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2003, 36 (05) :647-683
[7]  
Biane P., 2014, SEMIN LOTHAR COMB, V72, pB72b
[8]   A new approach to the word and conjugacy problems in the braid groups [J].
Birman, J ;
Ko, KH ;
Lee, SJ .
ADVANCES IN MATHEMATICS, 1998, 139 (02) :322-353
[9]  
Bronfman A., 2001, PREPRINT
[10]   GEODESIC AUTOMATION AND GROWTH FUNCTIONS FOR ARTIN GROUPS OF FINITE-TYPE [J].
CHARNEY, R .
MATHEMATISCHE ANNALEN, 1995, 301 (02) :307-324