CHARACTERIZATION OF TOBACCO PROTEIN-KINASE NPK5, A HOMOLOG OF SACCHAROMYCES-CEREVISIAE SNF1 THAT CONSTITUTIVELY ACTIVATES EXPRESSION OF THE GLUCOSE-REPRESSIBLE SUC2 GENE FOR A SECRETED INVERTASE OF SACCHAROMYCES-CEREVISIAE

被引:109
作者
MURANAKA, T [1 ]
BANNO, H [1 ]
MACHIDA, Y [1 ]
机构
[1] NAGOYA UNIV, FAC SCI, DEPT BIOL, CHIKUSA KU, NAGOYA 46401, JAPAN
关键词
D O I
10.1128/MCB.14.5.2958
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
We have isolated a cDNA (cNPK5) that encodes a protein kinase of 511 amino acids from suspension cultures of tobacco cells. The predicted kinase domain of NPK5 is 65% identical in terms of amino acid sequence to that of the SNF1 serine/threonine protein kinase of Saccharomyces cerevisiae, which plays a central role in catabolite repression in yeast cells. SNF1 positively regulates transcription of various glucose-repressible genes of the yeast, such as the SUC2 gene for a secreted invertase, in response to glucose deprivation: snf1 mutants cannot utilize sucrose as a carbon source. Expression of cNPK5 in yeast cells allowed the snf1 mutant cells to utilize sucrose for growth and caused constitutive expression of the SUC2 gene in wild-type cells even in the presence of glucose, an indication that the NPK5 protein is present in a constitutively active form in S. cerevisiae. On the other hand, expression of cNPK5 failed to suppress the growth defect of the snf4 mutant cells in the presence of sucrose and to induce expression of the SUC2 gene. These results indicate that SNF4 is required for the induction of SUC2 expression by NPK5, as by SNF1, even if NPK5 is constitutively active in S. cerevisiae. The recombinant NPK5 protein is capable of autophosphorylation in vitro in a reaction that requires Mn2+ rather than Mg2+ ions but is inhibited by Ca2+ ions. Both dicotyledonous and monocotyledonous plants have several copies of the NPK5-related gene, which probably constitute a small gene family. NPK5-related genes were found to be expressed in the roots, leaves, and stems of tobacco plants. The high degree of structural conservation and the functional similarity of NPK5 to SNF1 lead us to speculate that NPK5 (or a related kinase) also plays a role in sugar metabolism in higher plants.
引用
收藏
页码:2958 / 2965
页数:8
相关论文
共 34 条
[1]   COMPLEMENTATION OF SNF1, A MUTATION AFFECTING GLOBAL REGULATION OF CARBON METABOLISM IN YEAST, BY A PLANT PROTEIN-KINASE CDNA [J].
ALDERSON, A ;
SABELLI, PA ;
DICKINSON, JR ;
COLE, D ;
RICHARDSON, M ;
KREIS, M ;
SHEWRY, PR ;
HALFORD, NG .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1991, 88 (19) :8602-8605
[2]   CLONING AND SEQUENCE OF CDNAS FOR AN INTRACELLULAR ACID INVERTASE FROM ETIOLATED HYPOCOTYLS OF MUNG BEAN AND EXPRESSION OF THE GENE DURING GROWTH OF SEEDLINGS [J].
ARAI, M ;
MORI, H ;
IMASEKI, H .
PLANT AND CELL PHYSIOLOGY, 1992, 33 (03) :245-252
[3]   NPK1, A TOBACCO GENE THAT ENCODES A PROTEIN WITH A DOMAIN HOMOLOGOUS TO YEAST BCK1, STE11, AND BYR2 PROTEIN-KINASES [J].
BANNO, H ;
HIRANO, K ;
NAKAMURA, T ;
IRIE, K ;
NOMOTO, S ;
MATSUMOTO, K ;
MACHIDA, Y .
MOLECULAR AND CELLULAR BIOLOGY, 1993, 13 (08) :4745-4752
[4]  
CARLSON M, 1981, GENETICS, V98, P25
[5]   REGULATION OF SUGAR UTILIZATION IN SACCHAROMYCES SPECIES [J].
CARLSON, M .
JOURNAL OF BACTERIOLOGY, 1987, 169 (11) :4873-4877
[6]   2 DIFFERENTIALLY REGULATED MESSENGER-RNAS WITH DIFFERENT 5' ENDS ENCODE SECRETED AND INTRACELLULAR FORMS OF YEAST INVERTASE [J].
CARLSON, M ;
BOTSTEIN, D .
CELL, 1982, 28 (01) :145-154
[7]   THE YEAST SNF3-GENE ENCODES A GLUCOSE TRANSPORTER HOMOLOGOUS TO THE MAMMALIAN PROTEIN [J].
CELENZA, JL ;
MARSHALLCARLSON, L ;
CARLSON, M .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1988, 85 (07) :2130-2134
[8]   CLONING AND GENETIC-MAPPING OF SNF1, A GENE REQUIRED FOR EXPRESSION OF GLUCOSE-REPRESSIBLE GENES IN SACCHAROMYCES-CEREVISIAE [J].
CELENZA, JL ;
CARLSON, M .
MOLECULAR AND CELLULAR BIOLOGY, 1984, 4 (01) :49-53
[9]   MUTATIONAL ANALYSIS OF THE SACCHAROMYCES-CEREVISIAE SNF1 PROTEIN-KINASE AND EVIDENCE FOR FUNCTIONAL INTERACTION WITH THE SNF4 PROTEIN [J].
CELENZA, JL ;
CARLSON, M .
MOLECULAR AND CELLULAR BIOLOGY, 1989, 9 (11) :5034-5044
[10]   A YEAST GENE THAT IS ESSENTIAL FOR RELEASE FROM GLUCOSE REPRESSION ENCODES A PROTEIN-KINASE [J].
CELENZA, JL ;
CARLSON, M .
SCIENCE, 1986, 233 (4769) :1175-1180