NUMERICAL QUENCHING SOLUTIONS OF LOCALIZED SEMILINEAR PARABOLIC EQUATION

被引:0
作者
Nabongo, Diabate [1 ]
Boni, Theodora K. [2 ]
机构
[1] Univ Abobo Adjame, UFR SFA, Dept Mathemat & Informat, 16 BP 372 Abidjan 16,Cote Ivoire, Cocody, France
[2] Inst Natl Polytech Houphouetboigny Yamoussoukro, Cocody, France
来源
BOLETIN DE MATEMATICAS | 2007年 / 14卷 / 02期
关键词
Semidiscretizations; localized semilinear parabolic equation; semidiscrete quenching time; convergence;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper concerns the study of the numerical approximation for the following initial-boundary value problem: {u(t) (x,t) = u(xx) (x,t) + epsilon (1-u(0,t))(-p), (x,t) epsilon (-l,l) x (0,T), u(-l,t) = 0, u(l,t) = 0, t epsilon (0, T), u(x,0) = u(0)(x) >= 0, x epsilon (-l,l), where p > 1, 1 = 1/2 and epsilon > 0. Under some assumptions, we prove that the solution of a semidiscrete form of the above problem quenches in a finite time and estimate its semidiscrete quenching time. We also show that the semidiscrete quenching time in certain cases converges to the real one when the mesh size tends to zero. Finally, we give some numerical experiments to illustrate our analysis.
引用
收藏
页码:92 / 109
页数:18
相关论文
共 50 条
[31]   On quenching for some parabolic problems [J].
Zheng, Gao-Feng .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (7-8) :2416-2430
[32]   Numerical analysis of a Neumann boundary control problem with a stochastic parabolic equation [J].
Zhou, Qin ;
Li, Binjie .
SCIENCE CHINA-MATHEMATICS, 2023, 66 (09) :2133-2156
[33]   Numerical procedures for recovering a time dependent coefficient in a parabolic differential equation [J].
Azari, H ;
Allegretto, W ;
Lin, YP ;
Zhang, SH .
DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES B-APPLICATIONS & ALGORITHMS, 2004, 11 (1-2) :181-199
[34]   Numerical analysis of a Neumann boundary control problem with a stochastic parabolic equation [J].
Qin Zhou ;
Binjie Li .
Science China Mathematics, 2023, 66 :2133-2156
[35]   Convergence to Separate Variables Solutions for a Degenerate Parabolic Equation with Gradient Source [J].
Laurencot, Philippe ;
Stinner, Christian .
JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2012, 24 (01) :29-49
[36]   Convergence to Separate Variables Solutions for a Degenerate Parabolic Equation with Gradient Source [J].
Philippe Laurençot ;
Christian Stinner .
Journal of Dynamics and Differential Equations, 2012, 24 :29-49
[37]   Global attractors for degenerate semilinear parabolic equations [J].
Niu, Weisheng .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2013, 77 :158-170
[38]   Convergence to equilibrium for semilinear parabolic problems in RN [J].
Busca, J ;
Jendoubi, MA ;
Palácik, P .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2002, 27 (9-10) :1793-1814
[39]   FRACTIONAL APPROXIMATIONS OF ABSTRACT SEMILINEAR PARABOLIC PROBLEMS [J].
Bezerra, Flank D. M. ;
Carvalho, Alexandre N. ;
Nascimento, Marcelo J. D. .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2020, 25 (11) :4221-4255
[40]   Exact convergence rate of solutions for a semilinear heat equation with a critical and a supercritical exponent revisited [J].
Hoshino, Masaki .
JOURNAL OF ELLIPTIC AND PARABOLIC EQUATIONS, 2024, 10 (01) :329-359