NUMERICAL QUENCHING SOLUTIONS OF LOCALIZED SEMILINEAR PARABOLIC EQUATION

被引:0
|
作者
Nabongo, Diabate [1 ]
Boni, Theodora K. [2 ]
机构
[1] Univ Abobo Adjame, UFR SFA, Dept Mathemat & Informat, 16 BP 372 Abidjan 16,Cote Ivoire, Cocody, France
[2] Inst Natl Polytech Houphouetboigny Yamoussoukro, Cocody, France
来源
BOLETIN DE MATEMATICAS | 2007年 / 14卷 / 02期
关键词
Semidiscretizations; localized semilinear parabolic equation; semidiscrete quenching time; convergence;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper concerns the study of the numerical approximation for the following initial-boundary value problem: {u(t) (x,t) = u(xx) (x,t) + epsilon (1-u(0,t))(-p), (x,t) epsilon (-l,l) x (0,T), u(-l,t) = 0, u(l,t) = 0, t epsilon (0, T), u(x,0) = u(0)(x) >= 0, x epsilon (-l,l), where p > 1, 1 = 1/2 and epsilon > 0. Under some assumptions, we prove that the solution of a semidiscrete form of the above problem quenches in a finite time and estimate its semidiscrete quenching time. We also show that the semidiscrete quenching time in certain cases converges to the real one when the mesh size tends to zero. Finally, we give some numerical experiments to illustrate our analysis.
引用
收藏
页码:92 / 109
页数:18
相关论文
共 50 条
  • [1] NUMERICAL QUENCHING FOR A SEMILINEAR PARABOLIC EQUATION
    Nabongo, D.
    Boni, T. K.
    MATHEMATICAL MODELLING AND ANALYSIS, 2008, 13 (04) : 521 - 538
  • [2] NUMERICAL QUENCHING FOR A SEMILINEAR PARABOLIC EQUATION
    Nabongo, Diabate
    Boni, Theodore K.
    MEMOIRS ON DIFFERENTIAL EQUATIONS AND MATHEMATICAL PHYSICS, 2008, 44 : 89 - 104
  • [3] Numerical quenching for a semilinear parabolic equation with nonlinear boundary conditions
    Nabongo D.
    Boni T.K.
    Lobachevskii Journal of Mathematics, 2008, 29 (4) : 245 - 254
  • [4] LOCALIZED SOLUTIONS OF A SEMILINEAR PARABOLIC EQUATION WITH A RECURRENT NONSTATIONARY ASYMPTOTICS
    Polacik, Peter
    Yanagida, Eiji
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2014, 46 (05) : 3481 - 3496
  • [5] ASYMPTOTIC BEHAVIOR FOR NUMERICAL SOLUTIONS OF A SEMILINEAR PARABOLIC EQUATION WITH A NONLINEAR BOUNDARY CONDITION
    Diabate, Nabongo
    Boni, Theodore K.
    ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2008, 30 : 237 - 246
  • [6] A remark on the existence and uniqueness of solutions of a semilinear parabolic equation
    Kwembe, TA
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2002, 50 (03) : 425 - 432
  • [7] NUMERICAL APPROXIMATION OF DISCONTINUOUS SOLUTIONS OF THE SEMILINEAR WAVE EQUATION
    Cao, Jiachuan
    Li, Buyang
    Lin, Yanping
    Yao, Fangyan
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2025, 63 (01) : 214 - 238
  • [8] Quenching for semidiscretizations of a semilinear heat equation with Dirichlet and Neumann boundary conditions
    Nabongo, Diabate
    Boni, Theodore K.
    COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE, 2008, 49 (03): : 463 - 475
  • [9] NUMERICAL CRITICAL VALUE OF THE GENERALIZED PARABOLIC MEMS EQUATION
    Nabongo, Diabate
    JOURNAL OF MATHEMATICAL ANALYSIS, 2016, 7 (04): : 45 - 63
  • [10] Numerical quenching for a nonlinear diffusion equation with a singular boundary condition
    Nabongo, Diabate
    Boni, Theodore K.
    BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2009, 16 (02) : 289 - 303