ON RIGID DERIVATIONS IN RINGS

被引:0
作者
Artemovych, O. D. [1 ]
Lukashenko, M. P. [1 ]
机构
[1] Vasyl Stefanyk Precarpathian Natl Univ, 57 Shevchenka Str, UA-76018 Ivano Frankivsk, Ukraine
关键词
derivation; semiprime ring; Artinian ring;
D O I
10.15330/cmp.6.2.181-190
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that in a ring R with an identity there exists an element a is an element of R and a nonzero derivation d is an element of Der R such that ad(a) not equal 0. A ring R is said to be a d-rigid ring for some derivation d is an element of Der R if d(a) = 0 or ad(a) not equal 0 for all a is an element of R. We study rings with rigid derivations and establish that a commutative Artinian ring R either has a non-rigid derivation or R = R-1 circle plus . . . circle plus R-n is a ring direct sum of rings R-1, . . . , R-n every of which is a field or a differentially trivial v-ring. The proof of this result is based on the fact that in a local ring R with the nonzero Jacobson radical J(R), for any derivation d is an element of Der R such that d(J(R)) = 0, it follows that d = 0(R) if and only if the quotient ring R/J(R) is differentially trivial field.
引用
收藏
页码:181 / 190
页数:10
相关论文
共 16 条
[1]   The zero-divisor graph of a commutative ring [J].
Anderson, DF ;
Livingston, PS .
JOURNAL OF ALGEBRA, 1999, 217 (02) :434-447
[2]  
Artemovych OD., 1998, PERIOD MATH HUNG, V36, P1, DOI DOI 10.1023/A:1004648818462
[3]  
Beidar K. I., 1996, PURE APPL MATH
[4]  
Bhat VK, 2009, ALGEBRA DISCRET MATH, P14
[5]  
BRESAR M, 1990, MATH J OKAYAMA U, V32, P83
[6]  
Burkov V. D., 1987, IZV VYSSH UCHEBN ZAV, V12, P12
[7]  
COHEN IS, 1946, T AM MATH SOC, V59, P54
[8]  
Giambruno A, 1981, REND CIRC MAT PALERM, P30, DOI 10.1007/BF02844306
[9]  
Heerema N., 1962, T AM MATH SOC, V102, P346
[10]  
Herstein I. N., 1968, MATHEMATICAL ASS AM