ELASTIC-WAVES IN RANDOMLY STRATIFIED MEDIUM - ANALYTICAL RESULTS

被引:15
作者
KOTULSKI, Z
机构
[1] Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, 00-049
关键词
D O I
10.1007/BF01174733
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Propagation of elastic harmonic waves through a stratified slab is investigated. It is assumed a nonzero angle of inclination of an incident wave. The equation for the amplitudes of reflected and transmitted waves are presented in the form useful for simulation. Then a limiting case where the density of stratification of the slab tends to infinity is analysed and the equations for the amplitudes of the waves in a homogenized medium are obtained. Finally, the law of large numbers for noncommuting random products is applied to the randomized equation for amplitudes showing its convergence to some deterministic effective one for increasing density of stratification. © 1990 Springer-Verlag.
引用
收藏
页码:61 / 75
页数:15
相关论文
共 27 条
[1]   HARMONIC-WAVES IN COMPOSITE-MATERIALS [J].
ABOUDI, J .
WAVE MOTION, 1986, 8 (04) :289-303
[2]   TRANSIENT WAVES IN COMPOSITE-MATERIALS [J].
ABOUDI, J .
WAVE MOTION, 1987, 9 (02) :141-156
[3]   DIFFUSION APPROXIMATION TO WAVE-PROPAGATION IN IMPERFECTLY PERIODIC STRUCTURES [J].
BECUS, GA .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1979, 30 (04) :724-727
[4]   WAVE-PROPAGATION IN IMPERFECTLY PERIODIC STRUCTURES - RANDOM EVOLUTION APPROACH [J].
BECUS, GA .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 1978, 29 (02) :252-261
[5]  
Bellman R., 1960, INTRO MATRIX ANAL, DOI [10.1137/1.9781611971170.fm, DOI 10.1137/1.9781611971170.FM]
[6]   CENTRAL LIMIT-THEOREM FOR PRODUCTS OF RANDOM MATRICES [J].
BERGER, MA .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1984, 285 (02) :777-803
[7]  
Brekhovskikh L.M., 1960, WAVES LAYERED MEDIA
[8]   NEW METHOD FOR COMPUTING SYNTHETIC SEISMOGRAMS [J].
CHAPMAN, CH .
GEOPHYSICAL JOURNAL OF THE ROYAL ASTRONOMICAL SOCIETY, 1978, 54 (03) :481-518
[9]  
Furstenberg H., 1963, T AM MATH SOC, V108, P377, DOI [10.1090/S0002-9947-1963-0163345-0, DOI 10.1090/S0002-9947-1963-0163345-0]
[10]  
Haskell NA., 1953, B SEISMOL SOC AM, V43, P17, DOI [10.1785/BSSA0430010017, DOI 10.1785/BSSA0430010017]