CONTINUUM LIMIT OF QED2 ON A LATTICE

被引:27
作者
WEINGARTEN, DH [1 ]
CHALLIFOUR, JL [1 ]
机构
[1] INDIANA UNIV,DEPT MATH,BLOOMINGTON,IN 47405
基金
美国国家科学基金会;
关键词
D O I
10.1016/0003-4916(79)90265-3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A path integral is defined for the vacuum expectation values of Euclidean QED2 on a periodic lattice. Wilson's expression is used for the coupling between fermion and gauge fields. The action for the gauge field by itself is assumed to be a quadratic in place of Wilson's periodic action. The integral over the fermion field is carried out explicitly to obtain a Matthews-Salam formula for vacuum expectation values. For a combination of gauge and fermion fields G on a lattice with spacing proportional to N-1, N ε{lunate} Z+, the Matthews-Salam formula for the vacuum expectation 〈G〉N has the form (G)N=∫dnu;WN(G,f), where dμ is an N-independent measure on a random electromagnetic field f{hook} and WN(G, f{hook}) is an N-dependent function of f{hook} determined by G. For a class of G we prove that as N → ∞, WN(C, f{hook}) has a limit W(G, f{hook}) except possibly for a set of f{hook} of measure zero. In subsequent articles it will be shown that ∫dnu;WN(G,f) exists and limN→∞∫dnu;WN(G,f). © 1979.
引用
收藏
页码:61 / 101
页数:41
相关论文
共 28 条
  • [1] ARNOWITT R, 1976, GAUGE FIELD THEORIES
  • [2] BEREZIN FA, 1966, METHOD 2ND QUANTIZAT
  • [3] Bjorken James D., 1964, RELATIVISTIC QUANTUM, V6th
  • [4] BRYDGES D, UNPUBLISHED
  • [5] CHALLIFOUR JL, UNPUBLISHED
  • [6] MORE ABOUT MASSIVE SCHWINGER MODEL
    COLEMAN, S
    [J]. ANNALS OF PHYSICS, 1976, 101 (01) : 239 - 267
  • [7] COLEMAN S, 1975, ANN PHYS-NEW YORK, V93, P267, DOI 10.1016/0003-4916(75)90212-2
  • [8] COOPER A, 1977, T AM MATH SOC, V234, P1
  • [9] Dunford N., 1963, LINEAR OPERATORS PAR
  • [10] FADEEV LD, 1967, PHYS LETT B, V25, P29