This paper describes an improved electrode puller for the manufacture of glass microelectrodes or micropipettes. The instrument resembles a conventional horizontal two-stage, solenoid-powered electrode puller but the pull is now developed by a light moving-coil and a fixed permanent magnet, using the principle of the moving-coil loudspeaker. In a conventional puller the force is generated by a solenoid with a massive moving-iron core. In this new puller the moving-coil solenoid responds much more rapidly to changing currents because of its greatly reduced inductance, and a substantial reduction in mass to 25 g, gives more acceleration from a comparable force. The sudden discharge of a capacitor bank through the coil accelerates the glass quickly during the last stage of the pull. This rapid acceleration is of importance in the formation of good electrodes with fine tips. For the prototype, an electronic control unit was constructed which allows the parameters necessary for the manufacture of electrodes to be set and regulated accurately and repeatedly, so that series of electrodes of constant shapes can be made. The length of the electrode shank may be predetermined over a wide range and tip diameters down to 0.08 μm have already been measured. The angle of the taper that supports the tip may be varied from less than 1 to over 6 degrees. The mechanical design of the instrument is comparatively simple, as it has only one moving part, while the relative complexity of the electronic control section should not present any manufacturing difficulties. Although this puller has been used mainly to make single-barrel fine electrodes from borosilicate glass, it is adaptable for other purposes. The extent of the control over the shape of the shank of the electrode renders it particularly suitable for the manufacture of composite, ion-sensitive electrodes. © 1979.