A PSEUDO-GRADIENT PROCEDURE FOR SOLUTION OF DISCRETE LINEAR CHEBYSHEV APPROXIMATION PROBLEM

被引:4
作者
KRABS, W
机构
[1] Institut für Angewandte Mathematik der Universität Hamburg, Hamburg 13, D-2
关键词
D O I
10.1007/BF02234770
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper we develop kind of a gradient procedure for the solution of the discrete linear Chebyshev approximation problem based on a criterion for best approximants due to Kolmogoroff. Compared with the usual simplex methods it has the advantage of less numerical work and need of storage in a computer. © 1969 Springer-Verlag.
引用
收藏
页码:216 / &
相关论文
共 12 条
[1]   ALGORITHMS FOR BEST L1 AND LINFINITY LINEAR APPROXIMATIONS ON A DISCRETE SET [J].
BARRODALE, I ;
YOUNG, A .
NUMERISCHE MATHEMATIK, 1966, 8 (03) :295-+
[2]  
BITTNER L, 1961, Z ANGEW MATH MECH, V41, P238
[3]  
COLLATZ L, 1966, OPTIMIERUNGSAUFGABEN
[4]  
DESCLOUX J., 1961, NUMER MATH, V3, P180
[5]  
GOLDSTEIN AA, 1958, PAC J MATH, V3, P415
[6]  
Kolmogorov A. N., 1948, USP MAT NAUK, V3, P216
[7]  
KRABS W, 1964, Z ANGEW MATH MECH, V44, pT42
[8]  
KRABS W, 1963, THESIS HAMBURG
[9]  
MEINARDUS G, 1964, APPROXIMATION FUNKTI
[10]  
Stiefel E., 1960, NUMER MATH, V2, P1, DOI DOI 10.1007/BF01386203