IMPROVED BOUNDS FOR SOLUTIONS OF phi-LAPLACIANS

被引:1
作者
Arriagada, Waldo [1 ]
Huentutripay, Jorge [2 ]
机构
[1] Khalifa Univ, Dept Appl Math & Sci, POB 127788, Abu Dhabi, U Arab Emirates
[2] Univ Austral Chile, Inst Ciencias Fis & Matemat, Campus Isla Teja, Valdivia, Chile
关键词
Orlicz-Sobolev space; Harnack inequality; phi-Laplacian;
D O I
10.7494/OpMath.2018.38.6.765
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this short paper we prove a parametric version of the Harnack inequality for phi-Laplacian equations. In this sense, the estimates are optimal and represent an improvement of previous bounds for this kind of operators.
引用
收藏
页码:765 / 777
页数:13
相关论文
共 16 条
[1]  
Adams R., 2003, PURE APPL MATH
[2]   A Harnack inequality in Orlicz-Sobolev spaces [J].
Arriagad, Waldo ;
Huentutripay, Jorge .
STUDIA MATHEMATICA, 2018, 243 (02) :117-137
[3]   Regularity, positivity and asymptotic vanishing of solutions of a φ-Laplacian [J].
Arriagada, Waldo ;
Huentutripay, Jorge .
ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2017, 25 (03) :59-72
[4]  
Brezis H., 1983, ANAL FONCTIONNELLE T
[5]  
Di Benedetto E., 2010, PARTIAL DIFFERENTIAL, VSecond
[6]  
Fucik S., 1978, NONLINEAR ANAL FUNCT, V1, P59
[7]  
Giaquinta, 1983, MULTIPLE INTEGRALS C
[8]  
Gilbarg D., 1983, ELLIPTIC PARTIAL DIF, DOI [10.1007/978-3-642-61798-0, DOI 10.1007/978-3-642-61798-0]
[9]   One-dimensional singular problems involving the p-Laplacian and nonlinearities indefinite in sign [J].
Kaufmann, Uriel ;
Medri, Ivan .
ADVANCES IN NONLINEAR ANALYSIS, 2016, 5 (03) :251-259
[10]  
Krasnoselskii M.A., 1961, CONVEX FUNCTIONS ORL