MULTIPARAMETER SINGULAR-INTEGRALS AND MAXIMAL FUNCTIONS

被引:91
作者
RICCI, F
STEIN, EM
机构
[1] POLITECN TORINO, DIPARTIMENTO MATEMAT, I-10129 TURIN, ITALY
[2] PRINCETON UNIV, DEPT MATH, PRINCETON, NJ 08544 USA
关键词
SINGULAR INTEGRALS; MAXIMAL FUNCTIONS; CALDERON-ZYGMUND KERNELS; PRODUCT DOMAINS;
D O I
10.5802/aif.1304
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove L(p)-boundedness for a class of singular integral operators and maximal operators associated with a general k-parameter family of dilations on R(n). This class includes homogeneous operators defined by kernels supported on homogeneous manifolds. For singular integrals, only certain << minimal >> cancellation is required of the kernels, depending on the given set of dilations.
引用
收藏
页码:637 / 670
页数:34
相关论文
共 21 条
[1]   DIFFERENTIATION IN LACUNARY DIRECTIONS AND AN EXTENSION OF THE MARCINKIEWICZ MULTIPLIER THEOREM [J].
CARBERY, A .
ANNALES DE L INSTITUT FOURIER, 1988, 38 (01) :157-168
[2]  
CARBERY A, HP LP VARIANTS MULTI
[3]   ESTIMATES FOR MAXIMAL FUNCTIONS ALONG HYPERSURFACES [J].
CARLSSON, H ;
SJOGREN, P .
ARKIV FOR MATEMATIK, 1987, 25 (01) :1-14
[4]   MULTIPARAMETER MAXIMAL FUNCTIONS ALONG DILATION-INVARIANT HYPERSURFACES [J].
CARLSSON, H ;
SJOGREN, P ;
STROMBERG, JO .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1985, 292 (01) :335-343
[5]   HILBERT-TRANSFORMS ALONG CURVES .1. NILPOTENT GROUPS [J].
CHRIST, M .
ANNALS OF MATHEMATICS, 1985, 122 (03) :575-596
[6]  
CHRIST M, IN PRESS T AM MATH S
[7]   EQUIVALENCE BETWEEN BOUNDEDNESS OF CERTAIN CLASSES OF MAXIMAL AND MULTIPLIER OPERATORS IN FOURIER-ANALYSIS [J].
CORDOBA, A ;
FEFFERMAN, R .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1977, 74 (02) :423-425
[8]   MAXIMAL AND SINGULAR INTEGRAL-OPERATORS VIA FOURIER-TRANSFORM ESTIMATES [J].
DUOANDIKOETXEA, J ;
DEFRANCIA, JLR .
INVENTIONES MATHEMATICAE, 1986, 84 (03) :541-561
[9]   MULTIPLE SINGULAR-INTEGRALS AND MAXIMAL FUNCTIONS ALONG HYPERSURFACES [J].
DUOANDIKOETXEA, J .
ANNALES DE L INSTITUT FOURIER, 1986, 36 (04) :185-206