HILBERT SERIES OF A QUOTIENT ALGEBRA OF POLYNOMIALS

被引:11
作者
AUBRY, M
机构
[1] Laboratoire Jean-Alexandre Dieudonné, URA CNRS n168, Unicersité de Nice Sophia-Antipolis
关键词
D O I
10.1006/jabr.1995.1251
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let R congruent to k[x(1),..., x(r)]/(F-1,., F-n) where (F-1,..., F-n) denotes the ideal of homogeneous polynomials F-1,..., F-n of degree d(k) = deg F-k. Let us graduate R = R(0) + ... R(i) +... by setting deg x(1) deg x(r) = 1 and define the Hilbert series of R by Hilb R(t) = Sigma(i is an element of N)dim R(i)t(i). Then we have a lower bound (coeffi cientwise order). an old conjecture says that this lower bound is ''generically'' attained. The only general result (any r, any n) due to [M. Hochster and D. Laksov, Comm. Algebra 15 (1987), 227-239] tells us that it holds for the first non-trivial degree, i.e., in degree 1 + min(1 less than or equal to k less than or equal to n)d(k). In this paper we enlarge this result to a ''wide'' range of degrees. (C) 1995 Academic Press, Inc.
引用
收藏
页码:392 / 416
页数:25
相关论文
共 11 条
[1]   THIN ALGEBRAS OF EMBEDDING DIMENSION 3 [J].
ANICK, DJ .
JOURNAL OF ALGEBRA, 1986, 100 (01) :235-259
[2]  
Borel A., 1969, LINEAR ALGEBRAIC GRO
[3]   ON THE GENERATION OF CERTAIN BUNDLES OVER P(3) [J].
DOLCETTI, A .
MATHEMATISCHE ANNALEN, 1992, 294 (01) :99-107
[4]  
Ellia Ph., 1992, J ALGEBRAIC GEOM, V1, P531
[5]  
FROBERG R, 1985, MATH SCAND, V56, P117
[6]  
GREEN M, 1989, LECT NOTES MATH, V1389, P76
[7]  
HOCHSTER M, 1987, COMMUN ALGEBRA, V15, P27
[8]  
IARROBINO A, 1977, MEM AM MATH SOC, V188, P1
[9]   VECTOR-BUNDLES GLOBALLY ENGENDERED OVER A PROJECTIVE-SPACE [J].
MANIVEL, L .
MATHEMATISCHE ANNALEN, 1995, 301 (03) :469-484
[10]  
SPERNER E, 1930, ABH MATH SEM HAMBURG, V7, P149