KRAMERS EQUATION SIMULATION ALGORITHM .1. OPERATOR ANALYSIS

被引:10
作者
BECCARIA, M [1 ]
CURCI, G [1 ]
机构
[1] INFN,SEZ PISA,I-56010 SAN PIERO A GRADO,ITALY
来源
PHYSICAL REVIEW D | 1994年 / 49卷 / 05期
关键词
D O I
10.1103/PhysRevD.49.2578
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Using an operatorial formalism, we study the Kramers equation and its applications to numerical simulations. We obtain classes of algorithms which may be made precise at every desired order in the time step epsilon and with a set of free parameters which can be used to reduce autocorrelations. We show that it is possible to use a global Metropolis test to restore detailed balance.
引用
收藏
页码:2578 / 2589
页数:12
相关论文
共 21 条
[1]  
[Anonymous], 1984, SPRINGER SERIES SYNE
[2]   NUMERICAL-SOLUTIONS OF 1ST-EXIT-TIME PROBLEMS [J].
BECCARIA, M ;
CURCI, G ;
VICERE, A .
PHYSICAL REVIEW E, 1993, 48 (02) :1539-1546
[3]   A COMPARISON OF NUMERICAL ALGORITHMS FOR DYNAMICAL FERMIONS [J].
CAMPOSTRINI, M ;
ROSSI, P .
NUCLEAR PHYSICS B, 1990, 329 (03) :753-764
[4]  
Chin S. A., 1989, Nuclear Physics B, Proceedings Supplements, V9, P498, DOI 10.1016/0920-5632(89)90149-7
[5]   GLOBAL MONTE-CARLO ALGORITHMS FOR MANY-FERMION SYSTEMS [J].
CREUTZ, M .
PHYSICAL REVIEW D, 1988, 38 (04) :1228-1238
[6]   HIGHER-ORDER HYBRID MONTE-CARLO ALGORITHMS [J].
CREUTZ, M ;
GOCKSCH, A .
PHYSICAL REVIEW LETTERS, 1989, 63 (01) :9-12
[7]   THE STOCHASTIC METHOD FOR NUMERICAL SIMULATIONS - HIGHER-ORDER CORRECTIONS [J].
DRUMMOND, IT ;
DUANE, S ;
HORGAN, RR .
NUCLEAR PHYSICS B, 1983, 220 (01) :119-136
[8]   HYBRID MONTE-CARLO [J].
DUANE, S ;
KENNEDY, AD ;
PENDLETON, BJ ;
ROWETH, D .
PHYSICS LETTERS B, 1987, 195 (02) :216-222
[9]   TUNING THE HYBRID MONTE-CARLO ALGORITHM [J].
GUPTA, R ;
KILCUP, GW ;
SHARPE, SR .
PHYSICAL REVIEW D, 1988, 38 (04) :1278-1287
[10]   THE ACCEPTANCE PROBABILITY IN THE HYBRID MONTE-CARLO METHOD [J].
GUPTA, S ;
IRBACK, A ;
KARSCH, F ;
PETERSSON, B .
PHYSICS LETTERS B, 1990, 242 (3-4) :437-443