EFFECTS OF ACID OXIDATION ON WETTING AND ADHESION PROPERTIES OF ULTRA-HIGH MODULUS AND MOLECULAR-WEIGHT POLYETHYLENE (UHMWPE) FIBERS

被引:12
|
作者
HSIEH, YL
XU, SQ
HARTZELL, M
机构
[1] Division of Textiles, University of California-Davis, Davis
[2] Department of Textile Engineering, Nantong Textile Institute of Technology, Nantong, Jiangsu
关键词
UHMWPE; GEL-SPUN FIBERS; OXIDATIVE REACTIONS; WETTING PROPERTIES; ADHESION TO EPOXY; SURFACE MORPHOLOGY;
D O I
10.1163/156856191X00026
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
The effects of acid oxidation on the surface properties of gel-spun ultra-high modulus and molecular weight polyethylene (UHMWPE) fibers were investigated. Three acid-assisted reactions with CrO3 (I), K2Cr2O7 (II), and one base-catalyzed reaction with K2Cr2O7 (III) were studied. In reaction II, two levels of sulfuric acid were used for IIa and IIb, with reaction IIa containing the higher concentration. Under the reaction conditions chosen, i.e. 1 min at 23-degrees-C, the effects of these oxidations were restricted to the fiber surfaces. All oxidation reactions either significantly reduced or eliminated the axially oriented macrofibril striations and changed the lamellae perpendicular to the fiber axis to irregular hairline surface structures. The oxidative attacks on the fiber surfaces appeared to have occurred in the fibrillar structure and likely at the disorder regions along the fibrils. The epoxy resin wettability and the interfacial adhesion to the epoxy resin were both improved with reactions I and IIa, whereas reaction III did not affect either of these properties. A positive relationship between surface wettability and interfacial adhesion on single fibers was observed on the untreated and acid oxidized gel-spun UHMWPE fibers.
引用
收藏
页码:1023 / 1039
页数:17
相关论文
共 50 条
  • [31] Fatigue crack propagation of ultra-high molecular weight polyethylene
    Suyitno
    Pujilaksono, Lazuardi
    2017 7TH INTERNATIONAL ANNUAL ENGINEERING SEMINAR (INAES), 2017, : 130 - 134
  • [32] Ultra-high molecular weight polyethylene with hybrid porous structure
    Lermontov, Sergey A.
    Maksimkin, Aleksey V.
    Sipyagina, Nataliya A.
    Malkova, Alena N.
    Kolesnikov, Evgeniy A.
    Zadorozhnyy, Mikhail Yu
    Straumal, Elena A.
    Dayyoub, Tarek
    POLYMER, 2020, 202
  • [33] Evaluation of Sequentially Crosslinked Ultra-High Molecular Weight Polyethylene
    Morrison, M. L.
    Jani, S.
    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART B-APPLIED BIOMATERIALS, 2009, 90B (01) : 87 - 100
  • [34] A study of the nanotribological fatigue of ultra-high molecular weight polyethylene
    C. Gibbs
    J.W. Bender
    Tribology Letters, 2006, 22 : 85 - 93
  • [35] Stabilisation of ultra-high molecular weight polyethylene with Vitamin E
    Bracco, P.
    Brunella, V.
    Zanetti, M.
    Luda, M. P.
    Costa, L.
    POLYMER DEGRADATION AND STABILITY, 2007, 92 (12) : 2155 - 2162
  • [36] A study of the nanotribological fatigue of ultra-high molecular weight polyethylene
    Gibbs, C.
    Bender, J. W.
    TRIBOLOGY LETTERS, 2006, 22 (01) : 85 - 93
  • [37] Tailored bimodal ultra-high molecular weight polyethylene particles
    Lafleur, Sarah
    Berthoud, Romain
    Ensinck, Richard
    Cordier, Astrid
    De Cremer, Gert
    Philippaerts, An
    Bastiaansen, Kees
    Margossian, Tigran
    Severn, John R.
    JOURNAL OF POLYMER SCIENCE PART A-POLYMER CHEMISTRY, 2018, 56 (15) : 1645 - 1656
  • [38] THE EFFECT OF TEMPERATURE AND GEL CONCENTRATION ON THE RHEOLOGICAL PROPERTIES OF ULTRA HIGH MOLECULAR WEIGHT POLYETHYLENE (UHMWPE) IN DECALIN
    Lee, E. M.
    Choi, M. W.
    Jeong, H. M.
    Kim, B. K.
    JOURNAL OF POLYMER ENGINEERING, 2010, 30 (09) : 549 - 563
  • [39] Determination of spatial distribution of oxidation products in ultra-high molecular weight polyethylene by staining with sulphur dioxide or hydrochloric acid
    Jacobson, K.
    POLYMER DEGRADATION AND STABILITY, 2007, 92 (03) : 448 - 456
  • [40] Processing and Mechanical Properties of Ultra-high Molecular Weight Polyethylene Reinforced by Silver Nanoparticles
    Kang, Xueqin
    Yao, Chi
    Qiao, Lei
    Ge, Gaofeng
    Feng, Peizhong
    POLYMERS & POLYMER COMPOSITES, 2017, 25 (09) : 683 - 688