A CLUSTER-EXPANSION FOR STOCHASTIC LATTICE FIELDS

被引:14
作者
DIMOCK, J
机构
[1] Department of Mathematics, SUNY at Buffalo, Buffalo, 14214, New York
关键词
cluster expansion; Landau-Ginzburg equation;
D O I
10.1007/BF01026571
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A Langevin equation of Landau-Ginzburg type for the stochastic dynamics of a scalar field on a lattice is studied. A cluster expansion is developed for this problem which converges for large mass. As a consequence, one establishes uniformly in the volume: (a) exponential decay of correlations in space and time, and (b) exponential approach to equilibrium for a class of nearby initial distributions. © 1990 Plenum Publishing Corporation.
引用
收藏
页码:1181 / 1207
页数:27
相关论文
共 20 条
[1]  
BATTLE G, TREE GRAPHS QUASI BO
[2]  
BRYDGES D, 1986, CRITICAL PHENOMENA 1
[3]   STOCHASTIC QUANTIZATION [J].
DAMGAARD, PH ;
HUFFEL, H .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1987, 152 (5-6) :227-+
[4]   MEASURES ON SCHWARTZ DISTRIBUTION SPACE AND APPLICATIONS TO P(PHI)2 FIELD-THEORIES [J].
DIMOCK, J ;
GLIMM, J .
ADVANCES IN MATHEMATICS, 1974, 12 (01) :58-83
[5]   LARGE FLUCTUATIONS FOR A NON-LINEAR HEAT-EQUATION WITH NOISE [J].
FARIS, WG ;
JONALASINIO, G .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1982, 15 (10) :3025-3055
[6]  
Friedman A., 1975, PROBABILITY MATH STA, V28
[7]  
GAWEDSKI K, 1986, CRITICAL PHENOMENA 1
[8]   CRITICAL-BEHAVIOR IN A MODEL OF STATIONARY FLOW AND SUPERSYMMETRY BREAKING [J].
GAWEDZKI, K ;
KUPIAINEN, A .
NUCLEAR PHYSICS B, 1986, 269 (01) :45-53
[9]   MASSLESS LATTICE PHI-4(4) THEORY - RIGOROUS CONTROL OF A RENORMALIZABLE ASYMPTOTICALLY FREE MODEL [J].
GAWEDZKI, K ;
KUPIAINEN, A .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1985, 99 (02) :197-252
[10]  
GLIMM J, 1987, QUANTUM PHYSICS