ON U(Q)[SU(2)]-SYMMETRICAL DRIVEN DIFFUSION

被引:60
作者
SANDOW, S [1 ]
SCHUTZ, G [1 ]
机构
[1] WEIZMANN INST SCI, DEPT PHYS, IL-76100 REHOVOT, ISRAEL
来源
EUROPHYSICS LETTERS | 1994年 / 26卷 / 01期
关键词
D O I
10.1209/0295-5075/26/1/002
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study analytically a model where particles with hard-core repulsion diffuse on a finite one-dimensional lattice with space-dependent, asymmetric hopping rates. The dynamics are given by the U(q)[SU(2)]-symmetric Hamiltonian of a generalized anisotropic Heisenberg ferromagnet. Exploiting this symmetry, we derive exact expressions for various correlation functions. In the weakly driven system correlation length xi(s) and correlation time xi(t) are related by xi(t) - xi(s)2 indicating a dynamical exponent z = 2 as for symmetric diffusion. But also in strongly driven systems with finite density we find correlation functions with a dynamical exponent z = 2. This is not expected from the finite-size scaling analysis of the model.
引用
收藏
页码:7 / 12
页数:6
相关论文
共 18 条
[1]  
ALCARAZ FC, 1994, IN PRESS ANN PHYS NY
[2]   Q-DEFORMATIONS OF THE O(3) SYMMETRIC SPIN-1 HEISENBERG CHAIN [J].
BATCHELOR, MT ;
MEZINCESCU, L ;
NEPOMECHIE, RI ;
RITTENBERG, V .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1990, 23 (04) :L141-L144
[3]   AN EXACT SOLUTION OF A ONE-DIMENSIONAL ASYMMETRIC EXCLUSION MODEL WITH OPEN BOUNDARIES [J].
DERRIDA, B ;
DOMANY, E ;
MUKAMEL, D .
JOURNAL OF STATISTICAL PHYSICS, 1992, 69 (3-4) :667-687
[4]   EXACT SOLUTION OF A 1D ASYMMETRIC EXCLUSION MODEL USING A MATRIX FORMULATION [J].
DERRIDA, B ;
EVANS, MR ;
HAKIM, V ;
PASQUIER, V .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1993, 26 (07) :1493-1517
[5]   EXACT CORRELATION-FUNCTIONS IN AN ASYMMETRIC EXCLUSION MODEL WITH OPEN BOUNDARIES [J].
DERRIDA, B ;
EVANS, MR .
JOURNAL DE PHYSIQUE I, 1993, 3 (02) :311-322
[6]  
DOI M, 1976, J PHYS A-MATH GEN, V9, P1465, DOI 10.1088/0305-4470/9/9/008
[7]   FOCK-SPACE METHODS FOR IDENTICAL CLASSICAL OBJECTS [J].
GRASSBERGER, P ;
SCHEUNERT, M .
FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 1980, 28 (10) :547-578
[8]   BETHE SOLUTION FOR THE DYNAMIC-SCALING EXPONENT OF THE NOISY BURGERS-EQUATION [J].
GWA, LH ;
SPOHN, H .
PHYSICAL REVIEW A, 1992, 46 (02) :844-854
[9]   6-VERTEX MODEL, ROUGHENED SURFACES, AND AN ASYMMETRIC SPIN HAMILTONIAN [J].
GWA, LH ;
SPOHN, H .
PHYSICAL REVIEW LETTERS, 1992, 68 (06) :725-728
[10]  
HENKEL M, 1994, IN PRESS PHYSICA A