Comparisons of Deep Learning Algorithms for MNIST in Real-Time Environment

被引:20
|
作者
Palvanov, Akmaljon [1 ]
Cho, Young Im [1 ]
机构
[1] Gachon Univ, Dept Comp Engn, Seongnam, South Korea
关键词
Capsule networks; Dynamic routing; Residual learning; CNN; Logistic regression;
D O I
10.5391/IJFIS.2018.18.2.126
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Recognizing handwritten digits was challenging task in a couple of years ago. Thanks to machine learning algorithms, today, the issue has solved but those algorithms require much time to train and to recognize digits. Thus, using one of those algorithms to an application that works in real-time, is complex. Notwithstanding use of a trained model, if the model uses deep neural networks it requires much more time to make a prediction and becomes more complicated as well as memory usage also increases. It leads real-time application to delay and to work slowly even using trained model. A memory usage is also essential as using smaller memory of trained models works considerable faster comparing to models with huge pre-processed memory. For this work, we implemented four models on the basis of unlike algorithms which are capsule network, deep residual learning model, convolutional neural network and multinomial logistic regression to recognize handwritten digits. These models have unlike structure and they have showed a great results on MNIST before so we aim to compare them in real-time environment. The dataset MNIST seems most suitable for this work since it is popular in the field and basically used in many state-of-the-art algorithms beyond those models mentioned above. We purpose revealing most suitable algorithm to recognize handwritten digits in real-time environment. Also, we give comparisons of train and evaluation time, memory usage and other essential indexes of all four models.
引用
收藏
页码:126 / 134
页数:9
相关论文
共 50 条
  • [41] Real-time Yield Estimation based on Deep Learning
    Rahnemoonfar, Maryam
    Sheppard, Clay
    AUTONOMOUS AIR AND GROUND SENSING SYSTEMS FOR AGRICULTURAL OPTIMIZATION AND PHENOTYPING II, 2017, 10218
  • [42] Deep learning for real-time image steganalysis: a survey
    Ruan, Feng
    Zhang, Xing
    Zhu, Dawei
    Xu, Zhanyang
    Wan, Shaohua
    Qi, Lianyong
    JOURNAL OF REAL-TIME IMAGE PROCESSING, 2020, 17 (01) : 149 - 160
  • [43] Real-Time Traffic Classification through Deep Learning
    Priymak, Maxim
    Sinnott, Richard O.
    8TH IEEE/ACM INTERNATIONAL CONFERENCE ON BIG DATA COMPUTING, APPLICATIONS AND TECHNOLOGIES, BDCAT 2021, 2021, : 128 - 133
  • [44] Unsupervised Deep Representation Learning for Real-Time Tracking
    Ning Wang
    Wengang Zhou
    Yibing Song
    Chao Ma
    Wei Liu
    Houqiang Li
    International Journal of Computer Vision, 2021, 129 : 400 - 418
  • [45] Real-Time Lane Detection Based on Deep Learning
    Sun-Woo Baek
    Myeong-Jun Kim
    Upendra Suddamalla
    Anthony Wong
    Bang-Hyon Lee
    Jung-Ha Kim
    Journal of Electrical Engineering & Technology, 2022, 17 : 655 - 664
  • [46] Real-Time Classification of Earthquake using Deep Learning
    Kuyuk, H. Serdar
    Susumu, Ohno
    CYBER PHYSICAL SYSTEMS AND DEEP LEARNING, 2018, 140 : 298 - 305
  • [47] Potato Beetle Detection with Real-Time and Deep Learning
    Karakan, Abdil
    PROCESSES, 2024, 12 (09)
  • [48] Deep learning for real-time image steganalysis: a survey
    Feng Ruan
    Xing Zhang
    Dawei Zhu
    Zhanyang Xu
    Shaohua Wan
    Lianyong Qi
    Journal of Real-Time Image Processing, 2020, 17 : 149 - 160
  • [49] Real-time Facemask Recognition Using Deep Learning
    Sasikumar, R.
    Shanmugaraja, P.
    Kailash, K.
    Reddy, M. Prudhvi Charan
    Jagadeesh, S. Nikhil
    REVISTA GEINTEC-GESTAO INOVACAO E TECNOLOGIAS, 2021, 11 (02): : 2079 - 2085
  • [50] Robust Real-Time Traffic Surveillance with Deep Learning
    Fernandez, Jessica
    Canas, Jose M.
    Fernandez, Vanessa
    Paniego, Sergio
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2021, 2021