EXTENSION THEOREM FOR A FUNCTIONAL EQUATION

被引:7
作者
Burai, P. [1 ]
机构
[1] Univ Debrecen, Inst Math, Pf 12, H-4010 Debrecen, Hungary
关键词
Means; functional equation; extension theorem;
D O I
10.1515/JAA.2006.293
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We are going to prove an extension theorem on a functional equation for special means studied by Domsta and Matkowski.
引用
收藏
页码:293 / 299
页数:7
相关论文
共 50 条
  • [31] On a Multilinear Functional Equation
    A. A. Illarionov
    [J]. Mathematical Notes, 2020, 107 : 80 - 92
  • [32] On a Multilinear Functional Equation
    Illarionov, A. A.
    [J]. MATHEMATICAL NOTES, 2020, 107 (1-2) : 80 - 92
  • [33] A Certain Functional Equation
    An J.S.
    [J]. Results in Mathematics, 1998, 33 (3-4) : 198 - 202
  • [34] On the solvability of a functional equation
    Liu, Zeqing
    Zhao, Liangshi
    Kang, Shin Min
    Ume, Jeong Sheok
    [J]. OPTIMIZATION, 2011, 60 (03) : 365 - 375
  • [35] On a solution to a functional equation
    Patkowski, Alexander E.
    [J]. JOURNAL OF APPLIED ANALYSIS, 2022, 28 (01) : 91 - 93
  • [36] On a General Functional Equation
    Bahyrycz, Anna
    [J]. SYMMETRY-BASEL, 2025, 17 (03):
  • [37] A regularity theorem for composite functional equations
    A. Gilányi
    Z. Páles
    [J]. Archiv der Mathematik, 2001, 77 : 317 - 322
  • [38] The idempotency of the real spectrum implies the extension theorem for Nash functions
    Ronan Quarez
    [J]. Mathematische Zeitschrift, 1998, 227 : 555 - 570
  • [39] The idempotency of the real spectrum implies the extension theorem for Nash functions
    Quarez, R
    [J]. MATHEMATISCHE ZEITSCHRIFT, 1998, 227 (04) : 555 - 570
  • [40] An extension theorem for slice monogenic functions and some of its consequences
    Fabrizio Colombo
    Irene Sabadini
    Daniele C. Struppa
    [J]. Israel Journal of Mathematics, 2010, 177 : 369 - 389