UNIQUENESS THEOREMS FOR AN INVERSE PROBLEM IN A DOUBLY PERIODIC STRUCTURE

被引:41
作者
AMMARI, H
机构
[1] Centre de Mathhatiques Appliqudes, CNRS URA 756, Ecole Polytechnique
关键词
D O I
10.1088/0266-5611/11/4/013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Consider an electromagnetic plane wave incident on a doubly periodic structure in R(3). The inverse problem is to determine the shape of the structure from the scattered field. Uniqueness theorems are proved by applying the uniqueness theorem of Cauchy-Kowalewska, by extending Isakov's approach and using a result on local injectivity of maps between finite-dimensional spaces.
引用
收藏
页码:823 / 833
页数:11
相关论文
共 13 条
[1]  
ABBOUD T, 1993, CR ACAD SCI I-MATH, V317, P245
[2]  
ALBER HD, 1979, P ROY SOC EDINB A, V82, P251
[3]   A UNIQUENESS THEOREM FOR AN INVERSE PROBLEM IN PERIODIC DIFFRACTIVE OPTICS [J].
BAO, G .
INVERSE PROBLEMS, 1994, 10 (02) :335-340
[4]  
BOROVIKOV IP, 1992, DIFF URAVN, P827
[5]  
CHEN X, 1992, T AM MATH SOC, V323, P465
[6]   THE TIME-HARMONIC MAXWELL EQUATIONS IN A DOUBLY PERIODIC STRUCTURE [J].
DOBSON, D ;
FRIEDMAN, A .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1992, 166 (02) :507-528
[7]  
DOBSON D, 1993, FREE BOUNDARY PROBLE
[8]   ON UNIQUENESS IN THE INVERSE TRANSMISSION SCATTERING PROBLEM [J].
ISAKOV, V .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1990, 15 (11) :1565-1587
[9]   UNIQUENESS THEOREMS IN INVERSE SCATTERING-THEORY FOR PERIODIC STRUCTURES [J].
KIRSCH, A .
INVERSE PROBLEMS, 1994, 10 (01) :145-152
[10]   UNIQUENESS IN INVERSE OBSTACLE SCATTERING [J].
KIRSCH, A ;
KRESS, R .
INVERSE PROBLEMS, 1993, 9 (02) :285-299