COMPLETE NONCOMPACT KAHLER-MANIFOLDS WITH POSITIVE HOLOMORPHIC BISECTIONAL CURVATURE

被引:13
作者
SHI, WX [1 ]
机构
[1] HARVARD UNIV,DEPT MATH,CAMBRIDGE,MA 02138
关键词
D O I
10.1090/S0273-0979-1990-15954-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:437 / 440
页数:4
相关论文
共 50 条
[31]   NEARLY KAHLER-MANIFOLDS ARE HOLOMORPHIC FOLIATIONS [J].
APOSTOLOVA, LN .
DOKLADI NA BOLGARSKATA AKADEMIYA NA NAUKITE, 1985, 38 (08) :977-979
[32]   HOLOMORPHIC CURVATURES OF ALMOST KAHLER-MANIFOLDS [J].
FARRAN, H .
JOURNAL OF DIFFERENTIAL GEOMETRY, 1981, 16 (04) :711-717
[33]   ON THE STRUCTURE OF COMPLETE KAHLER-MANIFOLDS WITH NONNEGATIVE CURVATURE NEAR INFINITY [J].
LI, P .
INVENTIONES MATHEMATICAE, 1990, 99 (03) :579-600
[34]   COMPLETE KAHLER-MANIFOLDS WITH ZERO RICCI CURVATURE .2. [J].
TIAN, G ;
YAU, ST .
INVENTIONES MATHEMATICAE, 1991, 106 (01) :27-60
[35]   Compact Kahler manifolds with nonpositive bisectional curvature [J].
Liu, Gang .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2014, 24 (05) :1591-1607
[36]   Compact Kahler manifolds with nonpositive bisectional curvature [J].
Wu, HH ;
Zheng, FY .
JOURNAL OF DIFFERENTIAL GEOMETRY, 2002, 61 (02) :263-287
[37]   Conformally Kahler surfaces and orthogonal holomorphic bisectional curvature [J].
Kalafat, Mustafa ;
Koca, Caner .
GEOMETRIAE DEDICATA, 2015, 174 (01) :401-408
[38]   COMPACT KAHLER-EINSTEIN MANIFOLDS OF SEMI-POSITIVE BISECTIONAL CURVATURE [J].
MOK, N ;
ZHONG, JQ .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1984, 299 (12) :571-573
[39]   AN EMBEDDING THEOREM OF COMPLETE KAHLER-MANIFOLDS OF POSITIVE RICCI CURVATURE ONTO QUASI-PROJECTIVE VARIETIES [J].
MOK, NM .
MATHEMATISCHE ANNALEN, 1990, 286 (1-3) :373-408
[40]   On L2-estimates for partial derivative on pseudoconvex domains in a complete Kahler manifold with positive holomorphic bisectional curvature [J].
Biard, Severine .
COMPTES RENDUS MATHEMATIQUE, 2012, 350 (11-12) :565-570