COMPLETE NONCOMPACT KAHLER-MANIFOLDS WITH POSITIVE HOLOMORPHIC BISECTIONAL CURVATURE

被引:13
作者
SHI, WX [1 ]
机构
[1] HARVARD UNIV,DEPT MATH,CAMBRIDGE,MA 02138
关键词
D O I
10.1090/S0273-0979-1990-15954-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:437 / 440
页数:4
相关论文
共 50 条
[11]   On complete noncompact Kähler manifolds with positive bisectional curvature [J].
Bing-Long Chen ;
Xi-Ping Zhu .
Mathematische Annalen, 2003, 327 :1-23
[12]   AN EMBEDDING THEOREM OF COMPLETE KAHLER-MANIFOLDS OF POSITIVE BISECTIONAL CURVATURE ONTO AFFINE ALGEBRAIC-VARIETIES [J].
MOK, N .
BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 1984, 112 (02) :197-258
[13]   3-DIMENSIONAL COMPACT KAHLER MANIFOLDS WITH POSITIVE HOLOMORPHIC BISECTIONAL CURVATURE [J].
KOBAYASHI, S ;
OCHIAI, T .
JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 1972, 24 (03) :465-+
[14]   ON THE HOLOMORPHIC EQUIVALENCE OF BOUNDED DOMAINS IN COMPLETE KAHLER-MANIFOLDS OF NONPOSITIVE CURVATURE [J].
NISHIKAWA, S ;
SHIGA, K .
JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 1983, 35 (02) :273-278
[15]   ON COMPACT KAHLER-MANIFOLDS OF NONNEGATIVE BISECTIONAL CURVATURE .2. [J].
WU, H .
ACTA MATHEMATICA, 1981, 147 (1-2) :57-70
[17]   ON COMPACT KAHLER-MANIFOLDS OF NONNEGATIVE BISECTIONAL CURVATURE .1. [J].
HOWARD, A ;
SMYTH, B ;
WU, H .
ACTA MATHEMATICA, 1981, 147 (1-2) :51-56
[18]   On Kahler manifolds with positive, orthogonal bisectional curvature [J].
Chen, X. X. .
ADVANCES IN MATHEMATICS, 2007, 215 (02) :427-445
[19]   ON COMPLETE KAHLER-MANIFOLDS WITH FAST CURVATURE DECAY [J].
SUGIYAMA, K .
OSAKA JOURNAL OF MATHEMATICS, 1985, 22 (02) :261-275
[20]   Diameter rigidity for Kahler manifolds with positive bisectional curvature [J].
Datar, Ved ;
Seshadri, Harish .
MATHEMATISCHE ANNALEN, 2023, 385 (1-2) :471-479