THE GENERALIZED LOGARITHMIC SERIES DISTRIBUTION

被引:3
作者
HANSEN, BG
WILLEKENS, E
机构
[1] Department of Mathematics and Computing Science, Eindhoven University of Technology
关键词
D O I
10.1016/0167-7152(90)90138-W
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
It is shown that the generalized logarithmic series distribution is logconvex and hence infinitely divisible, and its Lévy measure is determined asymptotically up to second order. An application to risk theory is given. © 1990.
引用
收藏
页码:311 / 316
页数:6
相关论文
共 11 条
  • [1] Abramowitz M., 1965, HDB MATH FUNCTIONS
  • [2] FUNCTIONS OF PROBABILITY MEASURES
    CHOVER, J
    NEY, P
    WAINGER, S
    [J]. JOURNAL D ANALYSE MATHEMATIQUE, 1973, 26 : 255 - 302
  • [3] EMBRECHTS P, 1982, J AUSTRAL MATH SOC A, V32, P312
  • [4] A SHORT NOTE ON THE GENERALIZED LOGARITHMIC SERIES DISTRIBUTION
    FAMOYE, F
    [J]. STATISTICS & PROBABILITY LETTERS, 1987, 5 (05) : 315 - 316
  • [5] Hogg R.V, 1984, LOSS DISTRIBUTIONS
  • [6] POWER-SERIES DISTRIBUTIONS ASSOCIATED WITH LAGRANGE EXPANSION
    JAIN, GC
    [J]. BIOMETRISCHE ZEITSCHRIFT, 1975, 17 (02): : 85 - 97
  • [7] JAIN GC, 1973, TRAB ESTADIST, V24, P99
  • [8] Kaas Rob, 1987, THESIS U AMSTERDAM
  • [9] 2ND-ORDER BEHAVIOR OF THE TAIL OF A SUBORDINATED PROBABILITY-DISTRIBUTION
    OMEY, E
    WILLEKENS, E
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1986, 21 (02) : 339 - 353
  • [10] STEUTEL FW, 1970, MATH CTR TRACTS, V33